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Abstract
A Data-driven Exploration of Rhythmic Attributes and Style in Music

Matthew K. Prockup
Youngmoo E. Kim, Ph.D.

Humans identify with three basic components of music: melody, harmony, and rhythm, in order

to describe and di↵erentiate songs. With these simple components, one can recognize higher level

concepts such as the style and other expressive elements of a piece of music. In this thesis, I

explore rhythmic components and their relationships to each other, to genre, and other geo-cultural

factors (i.e., language) through data driven approaches using audio signals. Working in conjunction

with Pandora R○, I employ a corpus of over 1 million expertly-labeled audio examples across many

rhythmic styles and genres from their flagship Music Genome Project R○. Each song is labeled with

more than 500 attributes of rhythm, instrumentation, timbre, and genre.

In order to model the rhythmically related information from audio signals, I implement a set

of novel and compact rhythm-specific acoustic features. They represent beat-level and meter-level

information as well as elements of rhythmic variation and pulse stability. First, the acoustic features

are used to predict the presence of human-annotated attributes of the meter and rhythmic feel

(i.e., swing). Previous work has studied the general recognition of rhythmic styles in music audio

signals, but few e↵orts have focused on the deconstruction and quantification of the foundational

components of global rhythmic structures. Second, I focus on rhythm and its relationship to genre.

Genre provides one of the most convenient categorizations of music, but it is often regarded as a

poorly defined or largely subjective musical construct. I provide evidence that musical genres can to

a large extent be objectively modeled via a combination of musical attributes, with rhythm playing

a significant role. Finally, through a set of unsupervised machine learning experiments that employ

both the human-labeled attributes and acoustic features, a set of low-dimensional, perceptually-

motivated rhythm spaces is designed. These spaces provide grounded and visual insight into the

relationships between rhythmic attributes and rhythmic styles.



xx

Most previous work strives to automatically predict a specific phenomena (i.e., genre) without

a contextual understanding of why a label is applied. This work is motivated by largely the same

idea, however, I aim to not only predict the phenomena but also understand the components used

to construct it. This opens up the door to a more grounded and intuitive understanding of these

components and how they interact to create the di↵erent styles of music we enjoy.

Abstract
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Chapter 1: Introduction

When we listen to music, we are able to understand complex interactions and relationships of

musical attributes that have very little quantifiable justification. It is easy for us to hear similarities

and di↵erences between songs or genres, but it is sometimes di�cult to articulate and define those

di↵erences and apply them to an understanding of our individual preferences. Many of the attributes

that lead to our enjoyment of music revolve around the rhythm (i.e., meter, rhythmic feel). In this

thesis I outline methods to both capture rhythmic information and define its importance in broader

musical contexts such as genre. Furthermore, I employ scalable, data-driven approaches, using

information derived directly from the music audio signal, and develop models that leverage a corpus

of more than 1 million expert-labeled examples from Pandora’s Music Genome Project (MGP).

A grounded representation of rhythm can be influential to many areas of research and practice.

For example, we can uncover rhythmic organizations previously only speculated, and discover at-

tributes important to rhythmic style. This information can be used to develop a set of tools for

musicologists to answer a wide range of research questions by exploring co-occuring factors (i.e.,

rhythm vs. genre and language). One can ask questions such as, “Does all jazz contain swing?”, and

discover that some sub-genres of jazz do not (i.e., Afro-Cuban), and explore that sub-genre more

deeply to uncover its global influences (i.e., Latin-American, Spanish language, African rhythm).

An intuitive organization of rhythmic similarity can also be employed for automated playlist gener-

ation and music discovery. A playlisting algorithm could use rhythmic similarity (along with beat

matching) when transitioning between music tracks, attempting to keep a consistent rhythmic pulse

throughout. In another vein, by incorporating user feedback labels, we can develop a model of

users’ rhythm preferences within the styles of music they enjoy. In this section I will introduce the

contributions presented in this thesis that lay some of the groundwork to transform each of these

theoretical situations into real-life possibilities.
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1.1 Contribution 1: A Large-scale Evaluation of Rhythmic Attributes in
Audio Signals

Rhythm is one of the fundamental building blocks of music, and perhaps the simplest aspect for

humans to identify with. But constructing compact, data-driven models of rhythm presents con-

siderable complexity even when operating on symbolic data (i.e., musical scores). This complexity

is compounded when developing algorithms to model rhythm in acoustic signals for organizing a

large-scale library of recorded music. Previous work has studied the general recognition of rhythmic

styles in music audio signals, but few e↵orts have focused on the deconstruction and quantification

of the foundational components of global rhythmic structures. Through the design and implemen-

tation of targeted acoustic features, I first try to capture low-level rhythm descriptors from music

audio signals. Each of the descriptors is computed from an accent signal, a generic measure of

change over time in the audio signal where high points of change denote the presence of a new

musical event. From this signal we can capture rhythmic attributes by exploring information related

to the timing of these events. The descriptors presented in this thesis capture information at two

levels. The Tatum-level explores information that occurs at the lowest perceivable pulse. Informa-

tion at this level can uncover constancies or deviations in micro-timings (i.e., swing). Secondly, at

a greater time-scale, meter -level features can capture information relating to higher-level rhythmic

structures. This information can be used to capture the musical meter (time-signature) and other

broader rhythmic patterns.

In Chapter 6, I outline and evaluate a set of novel rhythm descriptors. Using the new rhythm

descriptors I look deeper into the compositional constructs of meter and rhythmic feel. Leveraging

the rhythm-related labels from Pandora’s MGP, a set of models are developed to predict meter,

swing, shu✏e, syncopation, danceablility, and back-beat strength across more than 1 million exam-

ples. Each of the developed models are designed to be both simple and scalable due to the large

amount of data. The evaluated models are both linear (Linear Regression, Logistic Regression) and

non-linear (Gradient Boosted Trees, Random Forests). These experiments are outlined further in

Chapter 7.

Chapter 1: Introduction
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1.2 Contribution 2: Rhythmic Attributes Are Necessary When Defining
Genre

With a more informed understanding of rhythmic attributes, I then explore their relationship to

genre. Genre provides one of the most convenient categorizations of music, but it is often regarded

as a poorly defined or largely subjective musical construct. In this area of work, I provide evidence

that musical genres can to a large extent be objectively modeled via a combination of musical at-

tributes. A data-driven approach is employed utilizing a subset of 48 hand-labeled musical attributes

comprising instrumentation, timbre, and rhythm, again leveraging the scope of the Pandora MGP.

Furthermore, using the acoustic features previously developed (Chapter 6), genre will be modeled

directly and through audio-driven models of the hand-labeled musical attributes. This work shows

that musical attributes are necessary to the definitions of genres and that rhythm plays a significant

role in those definitions. This body of work is outlined further in Chapter 8.

1.3 Contribution 3: Interpretable Rhythm Feature Spaces

Di↵erent attributes of rhythmic meter and feel combine in complex and creative ways to create

cohesive, distinct, and easily recognizable styles. In the final portion of the thesis I attempt to not

only learn compositional and genre attributes, but understand their overarching relationships. I once

again leverage the scope of Pandora’s MGP to create a set of grounded and intuitive low-dimensional

visual projections from human-annotated attributes and acoustic features. Each of the projection

candidates is first evaluated on how well it represents the rhythmic attributes through a set of

attribute prediction tasks. Second, each space is evaluated on the generalizability of its projection,

showing its ability to generalize to new examples through acoustic feature similarity. Finally, I

explore the e�cacy of each space at representing other potentially rhythm-related attributes such as

genre and sub-genre, as well as geo-cultural aspects such as language. An evaluation of these new

visual rhythm spaces is found in Chapter 9.

Chapter 1: Introduction
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Chapter 2: Background

There is a large body of work in Music Information Retrieval (Music-IR, MIR) that explores music’s

symbolic representation, its audio signal, and related human-tagged attributes. In this chapter, I

provide an overview of some of the work I build upon in this thesis. First, I will give a brief summary

of musical constructs in Section 2.1, followed by an introduction to signal processing methods used

for Music-IR in Section 2.2. In Section 2.3, I will dive deeper into methods used to capture rhythmic

elements from audio signals. Section 2.4 will describe methods used to predict human-labeled music

attributes. Finally, in Section 2.5, I will conclude with relevant work regarding the construction of

visually intuitive feature spaces.

2.1 Constructs of Music

Music is comprised of an organization of pitches (melody and harmony) in temporal patterns

(rhythm). This section outlines some of the constructs of music necessary for a domain-specific

understanding of the work presented.

The rhythmic component of music refers to the organization of musical events in time. In

music, the most basic aspect of rhythm is the beat. The beat is the continuous repetitive pulse felt

throughout the music. Beats are also organized into measures, which are repetitive groupings of

a defined number of beats. The first beat in a measure is known as the downbeat. The division

between measures (or bars) is the barline, which refers to the visual lines used to separate these

groupings in a musical score. The number of beats in a measure versus their relative duration is the

meter. Groupings of two or four is duple meter. Duple meter can also sometimes have a cut-time

feel, where the pulse is felt half as fast. Groupings of three is triple meter. A compound-duple meter

refers to an even number of groupings (usually two or four) of three notes. The pulse is felt at the

start of each grouping. An odd meter refers to the consistent grouping of an odd number of beats

(other than 3). The pulse felt among these notes can vary within a measure, but usually remains



5

consistent measure to measure. In addition to meter groupings at the beat level, there are also ticks

or Tatum (named for the jazz musician Art Tatum) at the sub-beat level. The tick or Tatum refers

to the smallest rhythmic interval or distance in a musical phrase. In some rhythms, onsets at the

anchor points of beat and meter are not explicitly present, however the concept of beat and meter

still exist. The complexity of beat and meter in relation to the absence of these anchor points is

known as syncopation. It can also be described as confusion created by early anticipation of the beat

or obscuring meter with emphasis against strong beats [10].

When analyzing music, it is also important to consider the melody and harmony, which are

comprised of an ordered structuring of pitches. In an octave there are 12 logarithmically spaced

pitches, where each successive note frequency f is related by fn+1 = fn2
1
12 . More generally fn+x =

fn2
x
12 , where x denotes the number of successive note steps (semitones). If each note is played in

succession, it forms the chromatic scale; usually, notes are not played in succession and not all notes

are used in a piece. The mode denotes which notes to play and which to skip relative to the given

key. Two of the most important concepts in melody and harmony are the key and mode. The key

of a piece of music defines the pitch around which the music is centered. It defines the tonal center

around which the mode is constructed. The mode denotes the ordering of pitches in a scale around

the key.

2.2 Music Signal Processing

Audio signal analysis can occur in both the time and frequency domains. For rhythm representation,

both are employed. One method widely used to learn temporal repetition is autocorrelation. The

general form of autocorrelation is shown in Equation 2.1. It is the sum of a given discrete signal

x[n] multiplied by the complex conjugate of a shifted form of itself based on a lag l. The resulting

calculation will have peaks where the original and shifted signals align. This emphasizes periodicities

in the signal, which may correlate with periodic events in rhythm such as the tempo and meter.

Rxx[l] =�
n

x[n]x̄[n − l] (2.1)

Chapter 2: Background
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Analysis in the frequency domain stems first from the Discrete Fourier Transform (DFT) and the

Short-Time-Fourier-Transform (STFT). Given a window of audio samples, the DFT will describe

the frequencies contained in the signal relative to the window size and the audio sample rate. The

STFT is the DFT shown over time. The STFT is also called the spectrogram. There is an important

trade o↵ when considering window size and analysis size. The window size must be at least as many

samples as the frequency analysis size. Smaller windows allow for more fine grained time resolution.

Alternatively, larger windows allow for higher frequency resolution, but lower time resolution. To

accommodate for decreased time resolution, successive windows usually overlap one another, and

are multiplied by a weighting function that allow the overlapped windows to still sum to the original

signal. This allows for a finer time resolution with a greater frequency resolution. However, some

smearing e↵ects over time still occur [11].

In order to describe audio, many features related to the time and frequency domains are used

instead of the raw waveform or spectrogram. These are calculated over time, usually in a windowed

fashion. The audio can then be described by sequence of these feature representations or simple

statistics of that sequence. This process is shown in Figure 2.1

F1 …F2 F3 F4 Fn

Figure 2.1: A representation of audio feature calculation.

It is sometimes necessary to separate harmonic and percussive sounds when analyzing the audio

spectrum. In order to accomplish this there is a process known as Harmonic Percussive Source

Separation (HPSS). Harmonic components in a spectrogram tend to be continuous horizontally, at

discrete points in frequency. Percussive components are the opposite; they are usually discrete in

time and contain wide band noise that creates continuous vertical lines in frequency. This separation

can be accomplished by methods of probabilistic modeling as in [12] as well as simpler methods such
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as median filtering in [13]. An example of HPSS is shown in Figure 2.2. Notice the separation of

the horizontal and vertical lines.

Power Spectrum Harmonic Spectrum Percussive Spectrum

Figure 2.2: An example of HPSS performed on a short audio example. The power spectrum
(left), harmonic component (center), and percussive component(right) are shown.

One of the most commonly used features in Music-IR are Mel-Frequency Cepstral Coe�cients

(MFCC ). This feature is a measure of the frequency domain envelope of an audio signal. It was

originally designed for speech recognition and has been widely adopted by the Music-IR community

to describe timbre of music and audio. One of the most important components of the MFCC is

the Mel-Spectrum, which is derived from a Mel-Spaced filter-bank. This is a representation of the

frequency domain that, through empirical tests, was shown to more closely represent the perception

of pitch in the human auditory system. The Mel-Spectrogram is the resulting spectrogram obtained

from this filter-bank. This spectrogram is then scaled by squaring it and taking the log (log power

mel spectra). From there, the Discrete Cosine Transform is taken (DCT). The coe�cients from this

transform are the MFCC’s. In practice the first 13-20 coe�cients are used. This process is shown

in Figure 2.3.

Log
Mel-Frequency 

Cepstral 
Coefficients 

Discrete Cosine 
Transform

DFT of Audio 
Signal Mel Filtering

Figure 2.3: Computation of Mel-Frequency Ceptstral Coe�cients

A filterbank can also be designed to represent the frequencies of musical notes, with filter bin

centers defined to correspond to specific note frequencies. A Constant Q Filter Bank Transform

(CQT ) arranges the frequency range of successive filter bins relative to constant multiple of the

previous. This allows for a logarithmic spacing of filter bins. Because musical notes are also spaced
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logarithmically (21�12), this type of filter bank allows for the capture of frequencies that have mu-

sically relevant weights. The application of the Constant Q Filter Bank over time is called the

Constant Q Filter Spectrogram. Another, more compact capture of musical pitches is the chroma

feature. The chroma captures the weighting of each pitch class (A, A#, B ... G, G#), independent

of octave. With this feature, it does not matter in which octave a pitch exists, only that it is present.

The application of the chroma feature over time is called the chromagram.

Both chroma and the CQT are not direct transcriptions, however. When played by a physical

musical instrument, all notes contain harmonics. In the spectrum, there is weight at the fundamental

frequency (the note being played), as well as weights at integer multiples of that frequency. These

harmonics end up in bins of other notes as well because they are integer multiples (linearly spaced)

and successive pitches are logarithmic (log spaced). While the exact transcriptions of notes in

CQT and chroma can be clouded by the presence of these harmonics, they are still very robust

representations of musical melody and harmony.

2.3 Capturing Rhythmic Elements in Audio Signals

Work by Longuet-Higgins in 1982 made some of the first attempts to quantify how humans interpret

rhythm. It was stated that the assignment of rhythmic interpretation to a metrical piece of music

calls for the knowledge of the underlying meter and the parsing of note values according to this

meter [14]. In a later article, the following propositions are presented:

1. Any given sequence of note values is in principle rhythmically ambiguous, although this am-

biguity is seldom apparent to the listener.

2. In choosing a rhythmic interpretation for a given note sequence, the listener seems to be

guided by a strong assumption: if the sequence can be interpreted as the realization of an

non-syncopated passage, then that is how they will interpret it.

3. Phrasing can make an important di↵erence to the rhythmic interpretation that the listener

assigns to a given sequence. Phrasing can therefore serve as a structural function as well as a

purely ornamental one.
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Much of the work on rhythm in MIR attempts to define components of these fundamentals as

well as their use in combination in order to intuit more complex rhythmic structures. In this section

I will outline some the of building blocks of rhythmic analysis. First I will focus on the detection of

musical events using onset detection and beat tracking. With these building blocks, another body of

work is presented that tries to both find and transcribe rhythmic patterns within the music. Certain

aspects of musical rhythm define the structure and style of a piece as well as the culture from which

it originates, so components of rhythm and style are important aspects of music to quantify.

2.3.1 Detecting Onsets

A task known as onset detection is an area of work that focuses on finding the positions, or onsets,

where musical notes begin. It is an important step when trying to detect musical beats, which are

the most basic reference to a song’s pulse. Much work in onset detection has come at the service

of beat tracking and is usually a preprocessing step. In this section, I will describe onset detection

algorithms that stand on their own. Methods that work to serve specific beat tracking methods

directly will be described in Section 2.3.2.

Onset detection data often exists in two forms, one of which is usually calculated from the other.

The first form is the onset detection function (ODF ) or accent signal. This is found by trying to

measure how much a given feature of an audio signal is changing. The goal is to find a signal that

is sparse with peaks or spikes that occur at musical events. From this signal, onset positions can

be calculated by some form of peak-picking. An example of an onset detection function is shown in

Figure 2.4.

While work in onset detection usually serves as input to a beat tracker, there is a body of work

that focuses on this task specifically. In work by Klapuri an onset detection system that takes

psychoacoustic knowledge into account is presented [15]. This is done by splitting the signal into

multiple perceptually motivated frequency bands, and trying to find onsets over multiple bands and

combining their results. Most previous systems utilized a peak picking method on the amplitude

envelope. The Klapuri method and the Scheirer method (part of a beat tracker) [16] are the first to

take advantage of this psychoacoustic information. The Klapuri method also goes a step further in
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Figure 2.4: An example of an accent signal or ODF.

the selection of onsets. It processes the output of the psychoacoustic filterbank by taking the first

order di↵erence of each band. Instead of showing a representation of how much energy is contained

in the present frame, it shows how that frame has changed from the previous one. This is shown

to be a better predictor of when musical events occur, especially in music with instruments that

lack strong percussive attacks. Dixon later expanded upon this. In his work, a much larger set of

input features is used. His detection system included an amplitude based ODF as well as a binary

mask of the local peaks and a multi-band spectrum with each channel containing an ODF and local

peak mask. The calculated onset times are then compared to ground truth onsets recorded from a

Bösendorfer piano, and the delay of detection to actual onset time is learned and incorporated into

the model [17].

Early methods in onset detection were energy based, meaning they relied on the amplitude enve-

lope or the magnitude of the complex spectrum and its various perceptually warped representations.

Work by Bello takes both the magnitude and phase of a signal into account. While magnitude

based onset detection is energy or energy-di↵erence based, phase based onset detection relies on the

phase of estimate of a signal to be somewhat constant. Large deviations in phase (Phase Deviation,

PD) denote the position of new musical events. The authors claim that by combining both energy

and phase based methods, they can produce a function that is sharp at the positions of onsets and

smooth everywhere else [18]. Dixon improves on this by further refining the onset detection function
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used. Because phase deviation can be noisy due to uninformative frequency bands, it is weighted by

the magnitude of the respective frequency. This results in a similar ODF to Bello’s, however with

a di↵erent fusion method. Another form of an ODF is computed via Spectral Flux (SF) [19]. This

is shown in Equation 2.2 where X is the magnitude spectrum and H(x) is the half-wave rectifier

function H(x) = x+�x�
2 .

SF (n) =
N
2 −1�

k=−N
2

H(�X(n, k)� − �X(n − 1, k)�) (2.2)

It has been shown that many of these onset detection methods perform well, and the best ones are

not significantly di↵erent from one another. However, due to SF’s simplicity, ease of computation,

and e↵ectiveness, the results show that it is the best overall choice for a system-wide ODF.

In later work, Gouyon shows that not all onset detection methods are optimal for all types

of music [20]. He shows that when beat-tracking certain types of music, the algorithms respond

di↵erently to certain ODFs. This motivates future systems to look at ODF functions optimized for

their specific task, or for the necessity of a hybrid system that uses di↵erent features for di↵erent

types of music.

Later work by Böck presents a method of onset detection known as SuperFlux [21]. It is an

enhanced version of the traditional Spectral Flux algorithms. Rather then taking the di↵erence of

consecutive frames, a lag was introduced, making it possible to take the di↵erence of the previous

nth frame. It is also designed to be causal, not taking into account any future information, which

will allow it to work in real time. The spectrogram is log filtered via a CQT and smoothed over

frequency to reduce micro-pitch deviations (i.e., vibrato). This change to Spectral Flux is shown in

Equation 2.3.

SF ′(n) =
N
2�

k=1
H(�Xlog,filt(n, k)� − �Xlog,filt(n − µ, k)�) (2.3)

The resulting SF ′(n, k) can be improved by a moving maximum as shown in Equation 2.4.

Xmax
log,filt(n,m) =max(Xlog,filt(n,m − 1 ∶m + 1)) (2.4)
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This resulting spectrogram is then summed over frequency in Equation 2.5. This becomes the

SuperFlux onset detection function. As before, H is the half-wave rectifier function H(x) = x+�x�
2 .

SF ∗(n) = m=M�
m=1 H(Xlog,filt(n,m) −Xmax

log,filt(n − µ,m)) (2.5)

The ODF shown in Figure 2.4 was obtained using this SuperFlux algorithm.

While many methods of onset detection rely on advanced processing of a signal, there has been

little work in using algorithms to learn locations of onsets. One such study by Degara uses knowledge

about the structure of music to generate a model for detecting onsets. A Hidden-Markov-Model is

used to learn the temporal regularity in successive onsets. This information is then used to judge

whether an estimated onset makes sense musically and magnifies or down-weights its importance

accordingly [22]. Similarly, work by Böck uses advanced machine learning in order to detect onsets.

He introduced a neural-network based approach for peak picking onsets that can be employed with

any of the previous ODF functions [21].

2.3.2 Beats

Some of the earliest work in beat tracking was used as a means for performance tracking and real

time music accompaniment. Many also used symbolic representations of the music with methods

designed for specific tasks as well as all music in the general sense. Some of this early work is

presented in [14, 23, 24]

One of the first systems that tries to beat-track an audio signal is presented by Goto [25]. It

finds local maxima in time and frequency from the audio spectrum and learns if those peaks are

bass-like onsets or snare-like onsets. In order to estimate beat locations, it uses a combination

of heuristics that were designed to keep IOI consistent and ensure the snare-drum and bass-drum

beats alternated. A few years following this work, Dixon introduces a beat tracking method that

was also used for rhythmic analysis and transcription. This method similarly found onsets in the

audio spectrum [26]. Beats are found by a clustering method, automatically grouping IOIs between

onsets. This naturally provides groupings that are multiples and sub-multiples of the beat. These
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groupings can be used to learn an estimate of the musical tempo, and with an estimate of the tempo,

the locations of the beats can be derived. Beat tracking algorithms were further advanced in early

work by Scheirer in [16]. In this work each individual frequency band is analyzed as an accent signal.

Each is summed with a resonator, or comb filter, that emphasizes impulses at a given tempo. When

this resonator signal corresponds well with the accent signal of a given frequency band, the musically

relevant positions in the accent signal are emphasized. Each band resonance is treated separately in

order to estimate tempo and the beat.

As work in beat tracking progressed, it evolved into its own subfield, and broke away from purely

serving performance tracking systems. Work by Gouyon in [27] and [28] uses a rhythmically and

tempo dependent method for determining the time quantization level of an accent signal. This

time quantization level is based on the tick, more commonly known as the Tatum. The Tatum is the

smallest rhythmic separation between successive notes in a piece of music. Using the autocorrelation

of low-level energy features quantized at these Tatum levels, a tempo estimate for the beat is found.

A beat-phase is then calculated with a series of comb filters similar to [16]. This method also does

not require detecting individual onsets; beats are found directly from the accent signals.

As the research progressed, a set of systems emerged that are still used as the basis for beat

tracking systems today. These systems were the parallel work of Davies [29, 30], Dixon [31, 32], Ellis

[33], and Oliveira [34, 35]. The Davies system fuses a general model and context-dependent model

of beat tracking. The general model is based on comb filters similar to previous approaches. The

context dependent model relies on statistics of previous beat estimates and attempts to maintain

continuity. The algorithm switches between these two models in order to both find beat phase and

remain consistent, giving greater confidence to estimates that occur at regular intervals. The Dixon

system, known as Beatroot is similar to his previous system, however the ODF has been replaced

with spectral flux, and is shown to perform similarly to the other state of the art methods of its time

[31, 32]. Oliveira expanded the work of Dixon by extending the Beatroot system to make it run in

real-time, forcing it to be causal and work with continuous input. This system, known as IBT, does

a small pre-tracking step to get a general estimate of beat period. It then employs a multi-agent
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system to estimate new beats. Each agent, starting the the pre-tracking estimates, outputs a set

of hypotheses regarding possible beat periods and phases. These hypotheses are then ranked and

accepted or rejected. The beats are then estimated in real-time [34].

Ellis in [33] has a di↵erent approach. His beat tracking approach uses dynamic programming in

order to estimate consecutive beats. Similar to previous methods, the accent function (ODF) is the

first order di↵erence of a mel-filtered spectrogram. This di↵erence is then half-wave rectified and the

remaining positive values are summed over frequency bands. The resulting signal is then high-pass

filtered to make it locally zero-mean. It is then smoothed by convolving it with a 10ms guassian

window, which becomes the accent signal. Tempo is then estimated through autocorrelation that

is weighted with an exponential window with a long upper tail and a maximum weighting value

at 120bpm. With an estimate of tempo, beats can be found through dynamic programming. In

the dynamic program, a recursive cost function is formulated such that spikes in the accent signal

within a widow of the tempo period are weighted relative to where the next beat should occur. This

function recursively iterates to create a cumulative score function C∗(t), which is a step-like version

of the ODF with local maxima at probable beat locations. This dynamic programming update is

shown in Equation 2.6.

C∗(t) = ODF (t) +max⌧=0...t{↵F (t − ⌧, ⌧p) +C∗(⌧)}
where,

F (�t, ⌧) = −ln��t

⌧
�2

(2.6)

A local maxima filter is then passed over this cumulative score function to assign a discrete beat

frame time to all frames P ∗(t). The visual representation of this dynamic programming method is

shown in Figure 2.5.

Among the current state of the art in beat tracking are a few methods formed around probabilistic

models rather than systems built purely on signal processing, filtering, and peak picking. Peeters

[36], Böck [37, 38], and Krebs [39] have developed models using HMMs and neutral networks. In

the Peeters method, a set of beat templates is learned trough linear discriminate analysis (LDA).
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Figure 2.5: An overview of beat tracking by dynamic programming. An example ODF (a) is
filtered by convolving it with a Gaussian kernel (b) to create the smoothed ODF (c). The beat
consistency weighting function (d) is then slid across the local score function (c) to recursively
create the cumulative score function C∗(t) (e). Beat frames (e) are then found by a local
maximum P ∗(t) of the cumulative score function.

This learns the most unique beat templates. These beat templates are derived from the derivatives

of chroma and spectral balance features over time. Occurrences of the beat templates are used

to derive the observation probabilities of an HMM. The hidden states are the beat times and their

associated positions within a bar. A reverse Viterbi method is used to decode these hidden states [36].

Work by Böck introduces an approach that employs a recurrent neural network (RNN). A recurrent

neural network is a network that contains both long-term and short-term memory, allowing it to

obtain temporal context. Spectral di↵erence audio features act as inputs to the network. The

output is a learned beat activation function. With the activation function, Tempo is found through

autocorrelation, and phase is found through its highest peak. This estimation of tempo and phase

Chapter 2: Background



16

allows it to delete spurious beats in the activation function. The remaining activations become the

beat estimates [37].

In addition to research surrounding the design of beat tracking methods, there has been recent

work in trying to define evaluation metrics for fair comparison. One such body of work is presented by

Holzapfel in [2]. This paper uses mutual agreement of many state of the art systems in order to judge

the di�culty of certain pieces of music, with or without previous ground truth beat annotations.

This helps the field better understand where it is succeeding as well as where it is failing in order

to better inform new approaches. In this work, Holzapfel also introduces a method that allows for

the fusion of multiple trackers in order to better track more di�cult pieces. The results of this

evaluation are shown in Figure 2.6.
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TABLE I
GROUND TRUTH PERFORMANCE OF EACH INDIVIDUAL BT ON DATASET1.

BOLD NUMBERS INDICATE BEST PERFORMANCES.

make all of the algorithms run. Furthermore there was both con-
siderable variability in the computational complexity of the al-
gorithms, with some algorithms slower than the fastest by up
to two orders of magnitude, and large variation in beat tracking
performance (see Section III). Towards making the results of
this paper more easily reproducible we propose a method to se-
lect a subset of these algorithms. The selected algorithms should
be characterized by good performance, but at the same time
care should be taken to include approaches that complement
each other. The goal is to obtain a small but diverse committee,
where each implementation is publicly available and not too de-
manding in terms of execution time.

To find a subset of the beat tracking algorithms we
make use of an oracle method. The first stage in this method is to
run all beat tracking algorithms on an existing annotated dataset
recording the per track performance of each algorithm. The first
member of the committee is the algorithm which performs best
in the mean across the entire dataset. The next member to enter
to the committee is determined by an iterative method. Each
remaining algorithm is taken in turn and it is combined with
those currently in the committee—in this case just the first al-
gorithm. The oracle performance is recorded by selecting the
most accurate algorithm per track in the dataset. Whichever
of the remaining algorithms gives the greatest improvement in
oracle performance is the next to enter the committee. This
procedure is iteratively continued until all beat trackers have
been included. We can then look at the order in which the al-
gorithms entered the committee and the improvement in perfor-
mance achieved by their inclusion. We can determine a subset
by fixing the number of committee members at the point where
improvements offered by additional members is small. A choice
of beat trackers guided by this strategy takes into account both
accuracy and diversity.

III. APPLYING MMA TO AN EXISTING DATASET

The largest dataset for beat tracking evaluation to date was
introduced by Gouyon [24]. It contains a total of 1360 excerpts

from different styles of music and will be referred to as Dataset1
throughout this paper. We use Dataset1 to investigate the accu-
racy and diversity of the available 16 beat trackers. Based on
these results we will i) select our committee of beat trackers ii)
give a proof of concept for our MMA method to assess difficulty
for automatic beat tracking and iii) determine the most appro-
priate evaluation method.

A. Accuracies of Potential Committee Members

In Table I the individual ground truth performance of each of
the 16 beat trackers is given for Dataset1. In order to compare the
beat trackers, a one-way ANOVA followed by a series of t-tests
with level of significance of was performed. Tukey’s
HSD adjustment was used to account for the effect of multiple
comparisons. The most accurate beat tracking results without
statistically significant differences are depicted in boldface.

It can be seen from Table I that a subset of beat trackers per-
form significantly better than most of the others. The set of best
beat trackers varies slightly depending on the evaluation mea-
sure which is applied. Comparing the individual accuracy values
of the approaches with the mean of all beat trackers shown in
the last row of Table I we can see that some approaches perform
worse than the mean for all evaluation measures. When looking
towards finding a subset of committee members we recall the
need for accuracy in beat tracking, since poorly performing beat
trackers can lead to an over-estimation of difficulty—where all
files appear difficult.

B. Selecting the Committee

While in previous work [19] the way we chose the committee
members was not documented, we now illustrate the effect of
choosing the committee members based on oracle performances
as described in Section II-B. The development of the oracle
scores are depicted in Fig. 3. A saturation effect can be observed
when the number of beat trackers in the subset increases, and we
decided to limit the number of beat trackers to five (as shown by
the vertical dotted line). The order in which algorithms entered
the oracle slightly varied between the evaluation measures. We
initially decided to choose the five beat trackers based on their
average ranking obtained from the three evaluation measures.
This gave . This ranking re-
sults in a higher diversity of approaches than by ordering ac-
cording to ground truth performance. For example, the DAV1

algorithm is not among the best five methods in the oracle. This
is caused by similarity between the DAV and DEG algorithms
which share the same input feature and tempo detection method.
Therefore, once DEG has entered the committee DAV offers
little additional improvement. However the fundamentally dif-
ferent methods of HAI and the BOE, which are less accurate
overall, are able to increase the diversity of the committee.

Despite the improvement offered by HAI and BOE, we chose
to exclude these approaches from the committee on the grounds
of portability, computation time and public availability. Instead,
we use the widely available approaches of Dixon (DIX) [6]
and Ellis (ELL) [4]. Their inclusion leads to non-significant
decrease in oracle performance (marked by a cross in Fig. 3)

1Note, we use an improved version of the original algorithm [5] which is
implemented as a Sonic Visualiser plugin.
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TABLE II
GROUND TRUTH PERFORMANCE OF EACH INDIVIDUAL BT

ON THE 217 ANNOTATED FILES IN DATASET2. BOLD
NUMBERS INDICATE BEST PERFORMANCES.

velopment from concentration in low to high histogram bins.
However, in Fig. 5(a) a higher proportion of histograms is
characterized by a concentration in bins of 1 bit or less. This
indicates that Dataset2 contains a larger relative percentage of
difficult samples than Dataset1. The super-imposed vertical
lines in the histogram plots in Fig. 5 indicate the borders for
the initial choice of files to be annotated, i.e., the first 270 files
and the last 19 files sorted by (see Section IV).
Samples on the left of the first line were chosen because they
were assumed to be difficult (low ), while the 19
files on the right of the second line in the histogram plots were
included because they were supposed to be the easiest in the
dataset (high ). In Fig. 5(b) a clear separation can
be observed between those files, where the difficult files are
marked by black triangles and the easy files by gray circles.
This separation is not evident for the other evaluation measures
in Figs. 5(d) and 5(f), and the difficult files form wider spread
clusters.

The individual accuracy values for Dataset2 are depicted in
Table II where bold numbers indicate the best beat tracking re-
sults without statistically significant differences. Note that the
files in Dataset2 were selected based on and are
supposed to be difficult, with the exception of the included 19
files with high . For Dataset2 the overall perfor-
mance is much lower than for Dataset1 (see Table I), and there
are fewer significant differences among the best beat trackers.
Moreover, there is no consistent subset of best beat trackers, as
all except four beat trackers are among the best performers for
at least one evaluation method. The performance of some beat
trackers is close to the mean performance of an entirely deter-
ministic (baseline) beat sequence, fixed at 120 bpm and gener-
ated as in [20]. In general, this proves that the compiled dataset
is more difficult for automatic beat tracking than Dataset1, and
again supports the validity of our proposed BT-MMA method.

Fig. 6. and for annotated 217 files in dataset2.
Pieces which are considered easy according to their are depicted
by gray circles (a) Scatter plot of versus , dotted
lines indicate the chosen border for difficult files for beat tracking (vertical line)
and human tappers (horizontal line) (b) Scatter plot of versus

.

B. Perceptual vs. Automatic Beat Tracking Difficulty

1) Assessing Perceptual Difficulty: To better understand the
difficulty of beat tracking, subjective aspects should be taken
into account as well. In Dataset2, we can gain insight into these
subjective aspects by using the spontaneous taps collected in the
annotation process.

During the annotation of Dataset2, we found that sponta-
neously tapping to an unknown piece is a very demanding
process for music without a clear and simple beat. Thus, we
assume that perceptually easier files result in tap sequences that
show higher mutual agreement, analogous to the beat tracker
outputs. In order to differentiate these agreements from the
MMA obtained from beat trackers (i.e., BT-MMA) we will
refer to them as TAP-MMA , and to the mean performance of
the taps compared to ground truth as TAP-MGP (in contrast
to BT-MGP). The TAP-MMA values between the five sponta-
neous taps that are available for each sample were computed
using Information Gain. Fig. 6(a) shows a scatter plot of these

values against the values of the five
beat tracking algorithms. While the sparse cluster in the upper
right corner indicates that high agreement of beat sequences
implies high agreement of spontaneous taps, such a relation
does not exist for low . In this case, we can observe
the existence of a wide range of values. This
implies that among files that are difficult for automatic beat
tracking, there were both difficult and easy files for the human
tappers. In Fig. 6(b) a high correlation between
and the mean performance of the taps against the ground truth
annotations can be observed. This correlation
supports the assumption that high agreement between subjects
implies perceptually easier pieces. Comparing Figs. 5(b) and
6(b), we can see that in Fig. 6(b) there are no separate clusters
of data for very low and values.
This indicates that, for the difficult samples, the human taps
tended to be more accurate compared to the ground truth, and
that the spontaneous taps were characterized by higher mutual
agreement than the beat tracker outputs.

In conclusion, we can state that, even without ground truth
available, it is possible to reliably detect samples where auto-
matic beat tracking will fail. Among these files there will be
both files that are perceptually difficult and files that are easy. As
our aim is to facilitate improvement in beat tracking, we want
to focus on those pieces that have a perceivable beat but that

Figure 2.6: The first table (left) shows an evaluation of all state of the art beat trackers on
a comprehensive beat tracking dataset. The references are labeled relative to the publication.
The second table (right) is an evaluation of all state of the art beat trackers on a selected subset
that has been hand chosen to be di�cult to track. (Sourced from [2])

Another study that informs the field was one performed by Davies in [40]. In this work, Davies

studies and evaluates the metrics that the field uses to evaluate beat tracking approaches. These

evaluation approaches can be found in Table 2.1. The study links the human perception of beat
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understanding to the ratings given by the various evaluation methods. The work recommends

that researchers use the continuity based metrics or the information gain because they are most

resilient to various evaluation conditions an maintain a high subjective (humans ratings) vs. objective

(evaluation scores) correlation.

Metric Explanation

F-Measure harmonic mean of precision p and recall r. F1 = 2 � p⋅r
p+r
�

P-Score normalized sum of the cross-correlation between the estimated beat locations and
the ground truth.

Cemgil a Gaussian error function is placed around each ground truth annotation and
accuracy is measured as the sum of the “errors” of the closest beat to each anno-
tation

Goto the annotation interval-normalized timing error is measured between annotations
and beat estimates

Continuity Based a given beat is considered accurate if it falls within a tolerance window placed
around an annoation and that the previous beat also falls within the preceding
tolerance window.

Information Gain this method performs a two-way comparison of estimated beat times to anno-
tations and vice-versa. Information Gain is calculated as the Kullback-Leibler
divergence between a histogram of timing errors and a uniform histogram.

Table 2.1: Beat tracking evaluation metrics

2.3.3 Detecting Metrical and Sub-metrical Structure

Expanding upon successful work in beat tracking, meter and downbeat detection algorithms attempt

to determine where musical measure boundaries exist (downbeat, barline), as well as how many beats

are contained between them (meter). These two tasks are strongly linked and can be explained in

reference to one another, so much of the canon treats these concepts interchangeably. The main

di↵erence is that for detection of downbeats, there needs to be an estimate of rhythm phase. In meter

detection, only the concept of music groupings is necessary. Additionally, there is a body of work

that looks at musical events at the micro-scale between beats (ticks or Tatums). Work in detecting

metrical structure is an important processing step in order to define rhythmic style and expression,

as well as to aid systems performing automatic accompaniment and symbolic music transcription.

While some previously explained work in beat tracking (Section 2.3.2) also contained meter and

downbeat detection, this section will focus on work specifically about meter and downbeats.
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In work by Seppanen, the Tatum grid was employed to estimate sound onsets [41]. Histograms of

IOIs are calculated, and the shortest onset intervals are found. This allows music with di↵erent time

bases to be directly compared, independent of tempo, as well as provide a meaningful structural

segmentation. In the area of meter recognition, work by Gouyon seeks to determine whether a piece

of music has a duple (groupings of two), or triple (groupings of three) feel. Meter was estimated by

the periodic recurrence of low-level acoustic features [42]. A similar approach to Seppanen was taken.

The signal becomes Tatum-aligned meaning that features correspond to musical Tatums rather then

arbitrary frame widths (such as 20ms 40ms, 1024 samples, 4096 samples, etc.). An autocorrelation

of these feature signals are then taken. These autocorrelations will show spikes at multiples of 2×
or 3× the lag that corresponds to a tempo estimate. With this information, the meter of the piece

can be determined [41].

In work by Jehan [43] and Klapuri [44] it was shown that di↵erent time scales are important when

studying musical structure. The Tatum level, beat level (tactus), and meter level are all important.

The Jehan method uses a semi-supervised approach through which beat tracking is performed along

with an estimate of meter. There is a small supervised step in which the phase of downbeats is learned

through human annotations as ground truth and modeled through a support vector machine (SVM).

The Klapuri system performs the analysis of meter at three di↵erent time scales simultaneously. A

time-frequency representation is passed through a set of specific comb filters. These outputs are

passed into a Hidden Markov Model (HMM) with the goal of estimating the pulse periods. With the

pulse periods and the output of the filters, a model of phase and periods are combined in order to

estimate meter. Later work by Schuller uses a stripped down version of tempo and meter detection

in order to discriminate ballroom dance styles. Features are Tatum-aligned and passed through a

set of comb filters in order to obtain an estimate of tempo and meter [45]. Additionally, because

these styles are tempo and meter dependent, the acoustic features as well as the meter and tempo

estimates are good discriminators when attempting to classify the dance styles.

Work by Papadopoulos approaches the task of finding downbeats a little di↵erently. This inte-

grates the knowledge of mutual dependencies of chords and metrical structure in order to gain insight
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into both. HMMs are trained to model chord progressions with the knowledge of downbeats and

vice versa. This shows that the information is mutually informative. Experiments were performed

on a variety of Beatles’ songs, without restrictions on metrical changes or tempo changes [46].

2.3.4 Rhythmic Pattern Analysis

A large body of work exists in onset detection and beat tracking. These methods are employed

to model the presence of musical events, but rarely explore musical meaning and context. In this

section, I outline a body of work that attempts to assign meaning and context in patterns of rhythmic

events.

The work by Dixon is a good example of expanding upon beat and onset detection. It uses

the beat positions and positions of onsets in order to infer note durations of each onset. This

allows for later use in music transcription systems and systems that discriminate musical styles

[26]. Similarly, work by Seppanen performs a rhythmic analysis by employing inter-onset-intervals

in order to develop a Tatum grid, allowing for the direct comparison of rhythm [47]. In work by

Gouyon, the similar process of Tatum extraction is performed. In addition to Tatum extraction,

Gouyon uses the found Tatums to perform instrument and pattern recognition within polyphonic

drum tracks (rough transcription) as well as beat tracking [27].

In contrast, Alghoniemy presented an early rhythm analysis study that did not rely solely on beat

tracking [48]. In this work, a clip of audio is low-pass filtered in order to preserve the parts of the

music that contain most of the rhythm and beats. Using binary trees created from the thresholded

signal, simple periodicity patterns are learned. The authors state that these patterns can be used to

discriminate musical style. Paulus in [49] had a similar idea of using a similarity matrix, however,

this time it is used to measure the similarity between two di↵erent pieces of music. The meter

is estimated, and downbeats, beats, and Tatums are calculated. Two audio signals can be found

as rhythmically similar by a low-cost alignment of their musical features at these various metrical

levels.

Similar work by Foote also investigates periodicity patterns in music. In his work the concept

of the beat spectrum is introduced [3, 50]. The beat spectrum is a measure of self-similarity as
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a function of lag l. A simple estimate (Eq. 2.7) can be found by diagonally summing along the

similarity matrix S.

B(l) ≈ �
k⊂R

S(k, k + l) (2.7)

A more robust estimate (Eq. 2.8) is found using the autocorrelation of S.

B(k, l) =�
i,j

S(i, j)S(i + k, j + l) (2.8)

Similar to an audio spectrogram (STFT), the beat spectrum can be shown in sliding windows over

time. This is known as the beat spectrogram. Some examples of the beat spectrum and a beat

spectrogram are shown in Figure 2.7.

There is an inverse relationship between the time
accuracy and the beat spectral precision. Technically, the
beat spectrum is a frequency operator, and hence does not
commute with a time operator. Thus beat spectral analysis,
just like frequency analysis, is a trade-off between spectral
and temporal resolution.

3. The Beat Spectrogram
We also introduce the beat spectrogram for analyzing

rhythmic variation over time. Like its namesake, the beat
spectrogram visualizes the beat spectrum over successive
windows to show rhythmic variation over time. Time is on
the x axis, with lag time on the y axis. Each pixel is colored
with the scaled value of the beat spectrum at that time and
lag, so that peaks are visible as brighter horizontal bars at
the repetition time. Figure 8 shows the beat spectrogram of
a 33-second excerpt of the Pink Floyd song Money.
Listeners familiar with this classic-rock chestnut may know
the song is primarily in the 7/4 time signature, save for the
bridge (middle section), which is in 4/4. The excerpt shown
starts 4 minutes and 55 seconds into the song, and clearly
shows the transition from the 4/4 bridge back into the last 7/
4 verse. On the left, there are strong beat spectral peaks on
each beat (annotated white numbers), particularly at two and
four beats (the length of a 4/4 bar), and an eight-beat
subharmonic. Two beats occur in slightly less than a second,
corresponding to a tempo slightly faster than 120 beats per
minute (120 MM). This is followed by a short two-bar
transition. Then the time signature changes to 7/4, clearly
visible as a strong seven-beat peak with the absence of a
four-beat component. The tempo also slows slightly, visible
as a slight lengthening of the time between peaks.

4. CONCLUSION
We have presented a method of visualizing musical

structure and rhythm. Unlike many other approaches, this
method does not rely on detecting specific attributes like
pitch or energy; rather the signal is used to model itself. 
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beat spectrum is a frequency operator, and hence does not
commute with a time operator. Thus beat spectral analysis,
just like frequency analysis, is a trade-off between spectral
and temporal resolution.

3. The Beat Spectrogram
We also introduce the beat spectrogram for analyzing

rhythmic variation over time. Like its namesake, the beat
spectrogram visualizes the beat spectrum over successive
windows to show rhythmic variation over time. Time is on
the x axis, with lag time on the y axis. Each pixel is colored
with the scaled value of the beat spectrum at that time and
lag, so that peaks are visible as brighter horizontal bars at
the repetition time. Figure 8 shows the beat spectrogram of
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Listeners familiar with this classic-rock chestnut may know
the song is primarily in the 7/4 time signature, save for the
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shows the transition from the 4/4 bridge back into the last 7/
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each beat (annotated white numbers), particularly at two and
four beats (the length of a 4/4 bar), and an eight-beat
subharmonic. Two beats occur in slightly less than a second,
corresponding to a tempo slightly faster than 120 beats per
minute (120 MM). This is followed by a short two-bar
transition. Then the time signature changes to 7/4, clearly
visible as a strong seven-beat peak with the absence of a
four-beat component. The tempo also slows slightly, visible
as a slight lengthening of the time between peaks.
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2.3  Visualizing Musical Rhythm
Both the periodicity and relative strength of rhythmic

structure can be derived from the similarity matrix. We’ve
coined the term beat spectrum for a measure of self-
similarity as a function of the lag [13]. Peaks in the beat
spectrum at a particular lag l correspond to audio repetitions
at that temporal rate. The beat spectrum B(l) can be
computed from the similarity matrix using diagonal sums or
autocorrelation methods. A simple estimate of the beat
spectrum can be found by diagonally summing the
similarity matrix S as follows:

Here, B(0) is simply the sum along the main diagonal
over some continuous range R, B(1) is the sum along the
first superdiagonal, and so on. Figure 6 shows an example
computed for a three-second excerpt of the Gould
performance. The periodicity of each note can be clearly
seen, as well as the strong eight-note periodicity of the
phrase (with a sub-harmonic at 16 notes). Especially

interesting are the peaks at three and five notes. These
comes from the three-note periodicity of the eight-note
phrase: in each phrase, notes three and six, notes four and
seven, and notes five and eight are identical.

A more robust estimate of the beat spectrum is the
autocorrelation of S: 

Because B(k,l) will be symmetrical, it is only necessary
to sum over one variable to yield a one-dimensional result
B(l). This approach works surprisingly well for most kinds
of musical genres, tempos, and rhythmic structures. Figure 7
shows the beat spectrum computed from the first ten
seconds of the Paul Desmond jazz composition Take 5,
performed by the Dave Brubeck Quartet. Besides being in
the uncommon  time signature, this rhythmically
sophisticated work requires some interpretation. First, note
that there is no obvious periodicity at the actual beat tempo
(denoted by solid vertical lines in the figure). Rather, there
is a marked periodicity at five beats, and a corresponding
sub-harmonic at ten. Jazz aficionados know that “swing” is
the subdivision of beats into non-equal periods rather than
“straight” (equal) eighth-notes. The beat spectrum clearly
shows that each beat is subdivided into near-perfect triplets.
This is indicated with dotted lines spaced one-third of a beat
apart between the second and third beats. A clearer
visualization of “swing” would be difficult to achieve by
any other means. 

The beat spectrum can be analyzed to determine tempo
and more subtle rhythmic characteristics. Peaks in the beat
spectrum give the fundamental rhythmic periodicity [13].
Strong off-beats and syncopations can be then deduced from
secondary peaks in the beat spectrum. Because the only
necessary signal attribute is repetition, this approach is more
robust than other approaches that look for absolute acoustic
features such as energy peaks.
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Much of the work on rhythm centers around the tasks of classifying defined rhythmic styles. Work

by Dixon uses some previous methods of IOI cluster histograms and autocorrelation as a means to

find periodicities in audio. Using these periodicities, the system is able to estimate the meter, the

tempo, and the beats. These attributes are then used as features in order to discriminate di↵erent

styles of Ballroom dance music [51]. Work by Gouyon presented a set of rhythmic descriptors that

are useful when describing audio. Using these features, a classification of ballroom dance styles is

performed using the Ballroom Dataset [52]. These features are:
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• tempo estimate

• periodicity histogram (PH)

• distinctiveness of PH

• PH power

• PH centroid

• PH percussiveness

• IOI Histogram mean (IOIH)

• IOIH geometric mean

• IOIH total energy

• IOIH centroid

• IOIH flatness

• IOIH distribution kurtosis

• IOIH high frequency

• DCT of IOIH (MFCC-like)

In work by Peeters, another more compact feature is presented that achieves similar results to

state of the art on the Ballroom Dataset [53]. Similar to previous methods, autocorrelation, Fourier

analysis and IOI histograms are computed for an ODF. Through interpolation and element-wise

multiplication, various periodicity forms can be fused. The final form can be made compact by only

keeping the values at musically relevant ratios of the tempo estimate.

Another rhythmic descriptor know as Fluctuation Patterns (FP) was introduced by Pampalk [54].

The objective of this descriptor is to measure the periodicity of the loudness in various frequency

bands. This feature has high dimensionality, so others such as Pohle attempt to clean it up [55].

Pohle introduces a few changes that include reducing the signal to only parts of increasing amplitude

(onsets), using semitone bands to detect onsets, and using improved widowing techniques when

detecting periodicities.

Much of the work explained thus far has relied on a passive analysis of audio signals in order to

classify rhythm. In order to better inform rhythmic representations, it may be important to seed

the system with examples as a model. One such representation was introduced in a body of work

by Tsunoo in [56, 57, 58] This work starts with a set of basic symbolic rhythmic patterns that best

represent a given style. These patterns are then synthesized. Each pattern is aligned to a given

section of audio using dynamic time warping. The pattern that aligns best is chosen for that section.

This is done over the entire signal, creating a list of best aligned clips over time. Within a specific

style, the synthesized patterns are combined with the original patterns by taking the mean. This

is performed iteratively until convergence. A compact rhythmic feature can be found by how well

sections of a song align with learned patterns of a known style.

Work by Volkel performs a similar process of seeding a system with symbolic data [59]. A set

of reference synthesized audio examples are created with symbolic patterns and percussion audio
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samples. A set of autocorrelation based features are calculated both on the unknown examples

and the reference pattern audio. These representations are then made tempo invariant with a log

scaling of the lag axis. Tempo becomes a linear scaling factor of the resulting representation [60].

This invariance allows for direct distance calculation of two examples. Classification was done by a

simple Nearest Neighbor classification, based on a chosen distance metric.

Similar to work in onset detection and beat tracking, later work has focused on learning rhythmic

patterns through neural networks. Battenberg uses conditional deep belief networks to learn di↵erent

styles of rhythmic patterns [61]. This di↵erers from other general neural net approaches because time

evolution is taken into account. Each node in the current time step can be conditioned on another

previous node. Each network is trained using snare drum, bass drum, and hi-hat activations. The

network is used to learn the likely Tatum position of each activation given previous activations.

This can be altered to form a generative model of rhythmic style with the motivation of creating an

automatic drum machine pattern generator.

Work by Krebs models the basics of rhythmic pattens in order to estimate the positions of beats

and downbeats [4, 39]. The work presents an HMM approach, however it is formulated as a Dynamic

Bayesian Network. It models Tatums, beats, downbeats, and rhythmic patterns simultaneously

throughout its multiple layers. This allows the modeling and prediction of rhythm at all metrical

levels. An example of this network is shown in Figure 2.8.

2.3.5 Rhythm and Drum Transcription

Other work in rhythmic analysis focuses solely on drum transcription, where the goal is to create an

exact symbolic representation of a performed sequence. While understanding rhythmic patterns is

important, it is only an intermediate step in this task. In my work, I am less interested in creating

a transcription system. My goal is to capture the function of rhythm in music from a grounded and

more general perspective. For further information on drum transcription, the reader is referred to

the following texts shown in Table 2.2.

Chapter 2: Background



23

mkmk�1

nk�1 nk

rkrk�1

ykyk�1

Figure 2. Dynamic Bayesian network; circles denote con-
tinuous variables and rectangles discrete variables. The
gray nodes are observed, and the white nodes represent the
hidden variables.

2. Tempo nk � {1, 2, ..., N} (unit bar positions
audio frame ), where

N denotes the number of tempo states;

3. Rhythmic pattern rk � {r1, r2, ..., rR}, where R de-
notes the number of rhythmic patterns.

For the experiments reported in this paper, we chose � =
20 ms, M = 1216, N = 26, and R (the number of rhyth-
mic patterns) was 2 or 8 as described in Section 4.2. Fur-
thermore, each rhythmic pattern is assigned to a meter �(rk)
� {3/4, 4/4}, which is important to determine the mea-
sure boundaries in Eq. 4. The conditional independence
relations between these variables are shown in Fig. 2.

As noted in [16], any discrete state DBN can be con-
verted into a regular HMM by merging all hidden vari-
ables of one time slice into a ‘meta-variable’ xk, whose
state space is the Cartesian product of the single variables:

xk = [mk, nk, rk]. (2)

3.2 Transition model

Due to the conditional independence relations shown in
Fig. 2, the transition model factorizes as

P (xk|xk�1) = P (mk|mk�1, nk�1, rk�1)�
� P (nk|nk�1, rk�1) � P (rk|rk�1)

(3)

where the three factors are defined as follows:

• P (mk|mk�1, nk�1, rk�1)
At time frame k the bar pointer moves from position
mk�1 to mk as defined by

mk = [(mk�1+nk�1�1)mod(Nm ·�(rk�1))]+1. (4)

Whenever the bar pointer crosses a bar border it is reset
to 1 (as modeled by the modulo operator).

• P (nk|nk�1, rk�1)
If the tempo nk�1 is inside the allowed tempo range

{nmin(rk�1), ..., nmax(rk�1)}, there are three possible
transitions: the bar pointer remains at the same tempo,
accelerates, or decelerates:

if nmin(rk�1) � nk�1 � nmax(rk�1),

P (nk|nk�1) =

�
�

�

1 � pn, nk = nk�1;
pn

2 , nk = nk�1 + 1;
pn

2 , nk = nk�1 � 1.
(5)

Transitions to tempi outside the allowed range are as-
signed a zero probability. pn is the probability of a
change in tempo per audio frame, and the step-size of
a tempo change per audio frame was set to one bar posi-
tion per audio frame.

• P (rk|rk�1)
For this work, we assume a musical piece to have a char-
acteristic rhythmic pattern that remains constant through-
out the song; thus we obtain

rk+1 = rk. (6)

3.3 Observation model

For simplicity, we omit the frame indices k in this section.
The observation model P (y|x) reduces to P (y|m, r) due
to the independence assumptions shown in Fig. 2.

3.3.1 Observation features

Since the perception of beats depends heavily on the per-
ception of played musical notes, we believe that a good
onset feature is also a good beat tracking feature. There-
fore, we use a variant of the LogFiltSpecFlux onset fea-
ture, which performed well in recent comparisons of on-
set detection functions [1] and is summarized in the top
part of Fig. 3. We believe that the bass instruments play
an important role in defining rhythmic patterns, hence we
compute onsets in low-frequencies (< 250 Hz) and high-
frequencies (> 250 Hz) separately. In Section 5.1 we in-
vestigate the importance of using the two-dimensional on-
set feature over a one-dimensional one. Finally, we sub-
tract the moving average computed over a window of one
second and normalize the features of each excerpt to zero
mean and unity variance.

z(t) STFT
filterbank
(81 bands) log diff

sum over fre-
quency bands

subtract
mvavg normalize y[k]

Figure 3. Computing the onset feature y[k] from the audio
signal z(t)

3.3.2 State tying

We assume the observation probabilities to be constant with-
in a 16th note grid. All states within this grid are tied and
thus share the same parameters, which yields 64 (4/4 me-
ter) and 48 (3/4 meter) different observation probabilities
per bar and rhythmic pattern.

Figure 2.8: Dynamic Bayesian network; circles denote continuous variables and rectangles
discrete variables. The gray nodes are observed, and the white nodes represent the hidden
variables. This network models the tempo n = bars

audio frame , position inside bar m, and rhythmic
patterns r. (Sourced from [4])

Author Title Source
FitzGerald Sub-band independent subspace analysis for drum transcription [62]
FitzGerald Drum transcription in the presence of pitched instruments using prior subspace

analysis
[63]

FitzGerald Drum transcription using automatic grouping of events and prior subspace anal-
ysis

[64]

FitzGerald Prior subspace analysis for drum transcription [65]
FitzGerald Automatic drum transcription and source separation [66]
FitzGerald Unpitched percussion transcription [67]
Gillet Automatic transcription of drum loops [68]
Gillet Drum Track Transcription of Polyphonic Music Using Noise Subspace Projection. [69]
Gillet ENST-Drums: an extensive audio-visual database for drum signals processing. [70]
Gillet Supervised and Unsupervised Sequence Modelling for Drum Transcription. [71]
Gillet Transcription and separation of drum signals from polyphonic music [72]
Tzanetakis Subband-based drum transcription for audio signals [73]
Yoshii Automatic Drum Sound Description for Real-World Music Using Template Adap-

tation and Matching Methods.
[74]

Yoshii Adamast: A drum sound recognizer based on adaptation and matching of spec-
trogram templates

[75]

Yoshii An error correction framework based on drum pattern periodicity for improving
drum sound detection

[76]

Paulus Drum transcription with non-negative spectrogram factorization [77]
Paulus Combining Temporal and Spectral Features in HMM-Based Drum Transcription. [78]
Thompson Drum transcription via classification of bar level rhythmic patterns [79]

Table 2.2: List of drum transcription literature.
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2.4 Predicting Human-Labeled Attributes

2.4.1 Musical Style and Genre

Musical genre is a high-level label given to a piece of music (e.g., Rock, Jazz) to both associate it

with similar music pieces and distinguish it from others. Genre is a very popular way to organize

music as it is being used by virtually all actors in the music industry, from record labels and music

retailers, to music consumers and musicians via radio and music streaming services on the Internet.

Genre labels are largely debated, however it is important to both sort and classify music in some

di↵erentiable way, and genre labels are how we do that.

With the explosion of music available to a listener at any given time, it is important to be able

to automate this process of genre labeling. One such study to support these varied opinions and

compare some machine based methods was explored by Sordo in [80]. In this work, expert genre

taxonomies and general public folksonomies are compared. Expert taxonomies are important in

order to characterize and sort data. A folksonomy is a direct human sourced version of organization,

such as tags in a radio service. Results from this study show that experts, the crowd wisdom, and

various computational methods agree on some genres (hip hop, blues), but not on others (rock). It

is important to leverage experts, the general public, and machines in order to characterize genre.

The rest of this section will give an overview of methods for the automatic detection of musical

genre. Some methods use tag-based approaches while others use multi-class discriminative methods.

Approaches for tagging will be explained later in Section 2.4.2.

Some of the earliest work in recognizing musical genre was presented by Soltau in [81]. In this

work a system was presented that automatically identified music as one of four categories: rock,

pop, techo, classical. The presented method employed a neural network to learn the dynamics of

acoustic cepstral features over time. The hidden states of that network were then used in a more

traditional network approach to discriminate music types. This method was similar to the feature-

learning approaches of today. It was shown that this approach was superior to HMMs, which were

popularly used for speech recognition at the time.
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A few years later, Tzanetakis more formally presented the problem of genre recognition and

introduced a few methods by which to approach it. The first contribution was a larger dataset of

musical genre. It contained 10 genres with a few (classical and jazz), containing sub-genres. Each

representative class contained 100 audio examples [5]. This genre hierarchy is shown in Figure 2.9.

This dataset became the basis of genre classification research (and criticism) for many years.TZANETAKIS AND COOK: MUSICAL GENRE CLASSIFICATION OF AUDIO SIGNALS 299

Fig. 4. Audio classification hierarchy.

TABLE I
CLASSIFICATION ACCURACY MEAN AND STANDARD DEVIATION

of a nonparametric classifier where each sample is labeled ac-
cording to the majority of its nearest neighbors. That way, no
functional form for the pdf is assumed and it is approximated
locally using the training set. More information about statistical
pattern recognition can be found in [29].

B. Datasets
Fig. 4 shows the hierachy of musical genres used for evalu-

ation augmented by a few (three) speech-related categories. In
addition, a music/speech classifier similar to [4] has been im-
plemented. For each of the 20 musical genres and three speech
genres, 100 representative excerpts were used for training. Each
excerpt was 30 s long resulting in (23 * 100 * 30 s 19 h)
of training audio data. To ensure variety of different recording
qualities the excerpts were taken from radio, compact disks, and
MP3 compressed audio files. The files were stored as 22 050Hz,
16-bit, mono audio files. An effort was made to ensure that
the training sets are representative of the corresponding musical
genres. The Genres dataset has the following classes: classical,
country, disco, hiphop, jazz, rock, blues, reggae, pop, metal.
The classical dataset has the following classes: choir, orchestra,
piano, string quartet. The jazz dataset has the following classes:
bigband, cool, fusion, piano, quartet, swing.

C. Results
Table I shows the classification accuracy percentage results of

different classifiers and musical genre datasets. With the excep-
tion of the RT GS row, these results have been computed using a
single-vector to represent the whole audio file. The vector con-
sists of the timbral texture features [9 (FFT) 10 (MFCC)
19 dimensions], the rhythmic content features (6 dimensions),

Fig. 5. Classification accuracy percentages (RND random, RT real time,
WF whole file).

and the pitch content features (five dimensions) resulting in a
30-dimensional feature vector. In order to compute a single tim-
bral-texture vector for the whole file the mean feature vector
over the whole file is used.
The row RT GS shows classification accuracy percentage re-

sults for real-time classification per frame using only the tim-
bral texture feature set (19 dimensions). In this case, each file
is represented by a time series of feature vectors, one for each
analysis window. Frames from the same audio file are never split
between training and testing data in order to avoid false higher
accuracy due to the similarity of feature vectors from the same
file. A comparison of random classification, real-time features,
and whole-file features is shown in Fig. 5. The data for creating
this bar graph corresponds to the random, RT GS, and GMM(3)
rows of Table I.
The classification results are calculated using a ten-fold cross-

validation evaluation where the dataset to be evaluated is ran-
domly partitioned so that 10% is used for testing and 90% is
used for training. The process is iterated with different random
partitions and the results are averaged (for Table I, 100 iterations
were performed). This ensures that the calculated accuracy will
not be biased because of a particular partitioning of training and
testing. If the datasets are representative of the corresponding
musical genres then these results are also indicative of the clas-
sification performance with real-world unknown signals. The
part shows the standard deviation of classification accuracy for
the iterations. The row labeled random corresponds to the clas-
sification accuracy of a chance guess.
The additional music/speech classification has 86% (random

would be 50%) accuracy and the speech classification (male,
female, sports announcing) has 74% (random 33%). Sports
announcing refers to any type of speech over a very noisy
background. The STFT-based feature set is used for the
music/speech classification and the MFCC-based feature set is
used for the speech classification.
1) Confusion Matrices: Table II shows more detailed infor-

mation about the musical genre classifier performance in the
form of a confusion matrix. In a confusion matrix, the columns
correspond to the actual genre and the rows to the predicted
genre. For example, the cell of row 5, column 1 with value 26
means that 26% of the classical music (column 1) was wrongly

Figure 2.9: A hierarchical layout of musical genre classification as presented by Tzanetakis.
(Sourced from [5])

In order to automatically classify musical genre, three types of features were proposed to represent

the audio. Timbre was represented with simple characteristics of spectral shape and energy as well

as MFCCs. Rhythm features were represented with characteristics of estimated beats found with

a beat tracking algorithm such as relative beat strength over time and beat stability. The third

type of features were pitch content features. These features include the prominent pitch class of

the song (key information), the most common intervals (mode and harmony information), and the

general octave range of the most prominent pitches. Using features from these three areas, Gaussian

Mixture Model (GMM) and Nearest Neighbors (NN) classifiers were trained. The results were

very promising, a three Gaussian GMM showed 61% classification accuracy for the general 10 class

problem and 88% and 68% for the classical (4 class) and jazz (6 class) subgenres respectively.

Motivated by Tzanetakis, later work in genre recognition starts to improve the selection of

features used and the methods of classification. In work by West [82, 83], the spectral contrast

feature is used in conjunction with MFCCs in order to describe the audio signal. Spectral contrast,

looks at the shape of spectral peaks and valleys in octave based frequency bands. A tree-based

classification method is also introduced. The method by which features are represented and songs

Chapter 2: Background



26

are classified is also altered. Instead of a song containing mean and variance based features based on

many windows calculated over time, each of the windows is treated independently when classifying.

The full songs genre is based on majority vote of each of it’s pieces. Work was also done to examine

the size and number of bocks to be used per song. Subsequent work by [84] further improves feature

representations with the introduction of Fluctuation Patterns and various features derived from

them.

A body of work evaluated by Gouyon in [85] revolving around tempo detection provided some-

thing quite important for genre detection as well with the introduction of the Ballroom Dataset.

This dataset provided 698 audio examples split across 8 ballroom dance styles. This was important

for both the genre and rhythm subfields because these musical style labels were more grounded

in musicology and more straight-forward. Labels had specific compositional attributes related to

the associated dance style rather than vague opinions of cultural popularity contained in the dis-

crimination of previous musical genre datasets. Schuller in [45] used proposed meter and tempo

recognition algorithms in order to discriminate ballroom dance styles. It was one of the first genre

related tasks that attempted to link concrete musicological attributes to musical genre. This study

also uncovered some flaws in the Ballroom dataset. It showed tempo alone was a good discriminator

of genres. Because of this, it is important to take tempo into account, and be sure that a proposed

system is learning components of genre rather than being a decent tempo detector and performing

well on this dataset (but not on others) because of that correlation.

More advanced work in feature design was presented by Tsunoo in [57, 58]. This work uses the

alignment and agreement of genre representative rhythmic pattern and bass-line templates in order

to describe and discriminate audio signals. This study tries to provide a direct link of theoretical

constructs and genre. It was shown to greatly improve classification methods that use timbre alone.

Much work in genre focuses on smaller datasets. It is important that proper training instances

are chosen in order to accurately describe genre but not overfit the small datasets. Work by Lopes

in [86] introduces some methods for selective sampling of training sets. The work tries to maximize

separability in a small sample that generalizes well to a larger sample. Work by Marques in [87] also
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tries to better formulate the genre problem by attempting to better understand the feature space

used for classification. It was found that quantizations and clusterings of the larger feature space

showed little degradation in classification results, suggesting that the features we are using, while

e↵ective could be simpler.

There are also studies that suggest, similar to notions alluded to before, that we might not

actually be recognizing genre with this work, but something that correlates well to small datasets

but does not scale. Work by Sturm brings up some of these issues. He analyzes and criticizes the

current work in the field through finding or sometimes introducing statistical anomalies in data

[88, 89].

However, there are a few take-aways in the criticism of the work. It is important to examine what

information features are capturing and if their representations are confounded with or causal to the

labels. Additionally, if “everyday people” are the sole beneficiaries of these systems, and they use

general folksonomies rather than academic taxonomies to describe music, the systems serve them

directly, even if their definitions are not as concrete. If a system for describing a culture alienates

those who it is supposed to benefit, it is of little use [80].

2.4.2 Human-Tagged Attributes

As the internet became a main stream medium for music listening, so did the ability to store and

search vast amounts of music and meta-data. A large subfield in MIR studies semantic descriptors of

audio. These descriptors can be used alone or in conjunction with audio features for song similarity,

music exploration, recommendation, and musicology. These descriptors, known as tags, can be

applied by musical experts (expert tags) as well as the general public (social tags). A couple of

music industry examples of this in practice are Pandora’s Music Genome Project (expert tags) and

Last.fm (social tags). This section will provide an overview of systems that recommend music based

on tags, learn the tags based on the music, and collect tags. Many tag-based approaches are rooted

in Natural Language Processing (NLP), Term-Document Indexing, and Multimedia Image Retrieval.

One of the cornerstone works in semantic-audio retrieval (SAR) presented by Slaney describes a

system for connecting sounds and words in a linked multidimensional vector space [6]. The semantic
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space uses multinomial models to represent and cluster semantic documents. The acoustic space

is formed by performing linear discriminant analysis and learning anchor Gaussian Mixture Models

(GMM) on acoustic features grouped into a set of classes that clearly represent them. Linkage is

formed by agreement of terms in the semantic space and the acoustic class hierarchy. This allows

semantic terms to retrieve sounds (text search query), as well gives sounds the ability to retrieve

related terms (auto-tagging). Examples of this are shown in Figure 2.10.

ABSTRACT
This paper describes a system for connecting sounds and words
in linked multi-dimensional vector spaces. The acoustic space is
represented using anchor models and partitioned using agglomer-
ative clustering. The semantic space is modeled by a hierarchical
multinomial clustering model. Nodes in one space are linked by
probabilistic models to the other space. With these linked models,
users retrieve sounds with natural language, and the system
describes new sounds with words.

1. THE PROBLEM
This paper describes a method of connecting sounds to words,
and words to sounds. Given a description of a sound, the system
finds the audio signals that best fit the words. Thus, a user might
make a request with the description “the sound of a galloping
horse,” and the system would respond by presenting recordings
of a horse running on different surfaces, and possibly of musical
pieces that sound like a horse galloping. Conversely, given a
sound recording, the system describes the sound or the environ-
ment in which the recording was made. Thus, given a recording
made outdoors, the system says confidently that the recording
was made at a horse farm where several dogs reside. 

We build a system that has these functions, called SAR
(semantic–audio retrieval), by learning the connection between a
semantic space and an auditory space. Semantic space maps
words into a high-dimensional probabilistic space. Acoustic
space describes sounds by a multidimensional vector. In general,
the connection between these two spaces will be many to many.
Horse sounds, for example, might include footsteps and neighs.   

Figure 1 shows one half of SAR; how to retrieve sounds from
words. Annotations that describe sounds are clustered within a
hierarchical semantic model that uses multinomial models. The
sound files, or acoustic documents, that correspond to each node
in the semantic hierarchy are modeled with Gaussian mixture
models (GMMs). Given a semantic request, SAR identifies the
portion of the semantic space that best fits the request, and then
measures the likelihood that each sound in the database fits the

GMM linked to this portion of the semantic space. The most
likely sounds are returned to satisfy the user’s semantic request.

Figure 2 shows the second half of SAR; how to generate
words to describe a sound. SAR analyzes the collection of sounds
and builds models for arbitrary sounds called anchors. All sounds
in the database are described by how well they are modeled by
these anchor sounds. This approach gives us a multidimensional
representation of any sound, and a distance metric that permits
agglomerative clustering in the acoustic space. Given an acoustic
request, SAR identifies the portion of the acoustic space that best
fits the request. Each portion of the acoustic space has an associ-
ated multinomial word model, and from this model SAR gener-
ates words to describe the query sound.

The SAR algorithm is illustrated with a closed set of acoustic
and semantic documents about animals. Six CDs (#12, 30, 34, 35,
37, 38) from the BBC Sound Effects Library contained 215 sepa-
rate tracks, with 330 minutes of audio recordings of animal
sounds. In addition, the concatenated name of the CD (e.g.,
“Horses I”) and track description (e.g., “One horse eating hay and
moving around”) form a unique semantic label for each track.
The audio from the CD track and the liner notes form a pair of
acoustic and semantic documents used to train the SAR system.

2. THE EXISTING SYSTEMS 
There are many multimedia retrieval systems that use a combina-
tion of words and/or examples to retrieve audio (and video) for
users. 

An effective way to find an image of the space shuttle is to
enter the words “space shuttle jpg” into a text-based web search
engine. The original Google system did not know about images,
but, fortunately, many people created web pages with the phrase
“space shuttle” that contained a JPEG image of the shuttle. More
recently, both Google and AltaVista for images, and Compuson-
ics for audio, have built systems that automate these searches.
They allow people to look for images and sound based on nearby
words. The SAR work expands those search techniques by con-
sidering the acoustic and semantic similarity of sounds to allow
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Figure 1: SAR models all of semantic space with a hierarchical
collection of multinomial models, each portion in the semantic
model is linked to equivalent sound documents in acoustic space
with a GMM.
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Figure 2: SAR describes with words an audio query by partition-
ing the audio space with a set of hierarchical acoustic models and
then linking each set of audio files (or documents) to a probabil-
ity model in semantic space.
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pieces that sound like a horse galloping. Conversely, given a
sound recording, the system describes the sound or the environ-
ment in which the recording was made. Thus, given a recording
made outdoors, the system says confidently that the recording
was made at a horse farm where several dogs reside. 

We build a system that has these functions, called SAR
(semantic–audio retrieval), by learning the connection between a
semantic space and an auditory space. Semantic space maps
words into a high-dimensional probabilistic space. Acoustic
space describes sounds by a multidimensional vector. In general,
the connection between these two spaces will be many to many.
Horse sounds, for example, might include footsteps and neighs.   

Figure 1 shows one half of SAR; how to retrieve sounds from
words. Annotations that describe sounds are clustered within a
hierarchical semantic model that uses multinomial models. The
sound files, or acoustic documents, that correspond to each node
in the semantic hierarchy are modeled with Gaussian mixture
models (GMMs). Given a semantic request, SAR identifies the
portion of the semantic space that best fits the request, and then
measures the likelihood that each sound in the database fits the

GMM linked to this portion of the semantic space. The most
likely sounds are returned to satisfy the user’s semantic request.

Figure 2 shows the second half of SAR; how to generate
words to describe a sound. SAR analyzes the collection of sounds
and builds models for arbitrary sounds called anchors. All sounds
in the database are described by how well they are modeled by
these anchor sounds. This approach gives us a multidimensional
representation of any sound, and a distance metric that permits
agglomerative clustering in the acoustic space. Given an acoustic
request, SAR identifies the portion of the acoustic space that best
fits the request. Each portion of the acoustic space has an associ-
ated multinomial word model, and from this model SAR gener-
ates words to describe the query sound.

The SAR algorithm is illustrated with a closed set of acoustic
and semantic documents about animals. Six CDs (#12, 30, 34, 35,
37, 38) from the BBC Sound Effects Library contained 215 sepa-
rate tracks, with 330 minutes of audio recordings of animal
sounds. In addition, the concatenated name of the CD (e.g.,
“Horses I”) and track description (e.g., “One horse eating hay and
moving around”) form a unique semantic label for each track.
The audio from the CD track and the liner notes form a pair of
acoustic and semantic documents used to train the SAR system.

2. THE EXISTING SYSTEMS 
There are many multimedia retrieval systems that use a combina-
tion of words and/or examples to retrieve audio (and video) for
users. 

An effective way to find an image of the space shuttle is to
enter the words “space shuttle jpg” into a text-based web search
engine. The original Google system did not know about images,
but, fortunately, many people created web pages with the phrase
“space shuttle” that contained a JPEG image of the shuttle. More
recently, both Google and AltaVista for images, and Compuson-
ics for audio, have built systems that automate these searches.
They allow people to look for images and sound based on nearby
words. The SAR work expands those search techniques by con-
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Figure 2.10: Semantic-Audio Retrieval of audio from a text query (a) and text descriptors
from an audio query (b). (Sourced from [6])

Because musical meaning is not contained solely within the audio signal, but also in cultural and

semantic descriptions of a song, a study by Whitman used web-crawled data in order to classify

di↵erent artists [90]. Using the web-crawled data, a set of basis vectors was created that best

represents the audio. The power spectral density (PSD) is mapped to the web mined descriptors

of the audio. The PSD of unknown audio can then be reduced to a semantic, and hopefully more

meaningful space.

In work by Knees, a method is proposed that uses word occurrences on artist websites in order

to classify them [91]. Later work by Knees proposes the use of both content based methods and

artist similarity by websites for playlist generation [92]. Artist similarity via the web is similar to

the previous approach. Audio content similarity is based on MFCC’s and GMM sampling. Both

are combined and playlists are generated with self organizing maps (SOM). This work is novel in its

ability to combine both semantic data and audio data to solve a related, but separate, task. Celma

presents similar work in music recommendation. In this work however, much more data is scraped

from the web than just artist profiles. Users themselves have generated profiles interests and listening

habits. These are used in conjunction with artist profiles, new music releases, upcoming concerts (by

location), podcast sessions, music blogs, and album reviews. The paper outlines that two important
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types of recommendations can be considered. The first type, static recommendations, can be made by

considering a users favorite artists and their similarity to other artists. The second type, dynamic

recommendations, can be made by analyzing currently trending information, such as upcoming

concerts and new song and album releases, in conjunction with the evolving listening habits of a user

[93]. Another expansion of the tag space was presented by Bischo↵ [94]. This work uses tag-based

information to infer theme recommendations. In this system, users can search based on the music’s

context of use. In this case, “Theme” music refers to queries such as “Halloween”,“Christmas”,

“workout”, “beach”, “dinner”, “driving”, etc.

In work by Levy, it is shown that while social tags are extremely varied and informal in their

representation, a low-dimensional semantic space can still be derived that works well on the track

level [95]. These social tags were obtained from Last.fm, an internet radio site where users can tag

the music they are listening to with any term they want. By using Correspondence Analysis to

put both tags and songs in the same space, other more specific queries, such as by mood, can be

performed and songs can accurately be retrieved. Keeping with the theme of social tags, others have

tried to create additional tools for tag collection. One such example is TagATune [96]. Through this

online game, players tag songs and must decide if they are listening to the same song, or a di↵erent

one. This adds some additional motivation for better and more descriptive tags. The game also has

an auto-player bot for when a user is not paired up with a live partner. This can be automated

with previous annotation tags. It can also be driven by another auto-tagging algorithm, and a live

players agreement can be used to evaluate it [97]. A similar game named MajorMiner was presented

by Mandel in [98]. Rather than the objective of deciding whether or not you are listening to the

same clip (TagATune), MajorMiner scores points simply on tag agreement with other participants.

The previously discussed work up until this point has been purely relational in trying to directly

map human responses to audio content. In some of the following methods, focus is placed on the sole

goal of attempting to automatically tag music that is poorly curated or when tags are non-existent.

In work by Eck, a supervised machine learning approach is proposed to automatically generate a

tags from audio content. The set of predicted tags is also restricted to a standard set of common
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tags. Tags are also treated as semi-continuous, allowing for the model to represent how much of a

certain attribute there is. Finally, any song can contain any number of tags simultaneously, each

with varying degrees of expression. For each tag, a separate AdaBoost based classifier is trained

[99, 100]. Similar work was presented by Tingle. A data set was collected called Swat10k (also

Cal10k), which consists of 10,870 songs annotated using a vocabulary of 475 acoustic tags and 153

genre tags from Pandoras Music Genome Project (MGP). The Music Genome Project is an initiative

by Pandora for the expert labeling of songs on a variety of musical attributes in order to recommend

the music based on song similarity and listener preference. The acoustic tags were consistently

applied to songs by experts, making the data much more reliable than social tags. This data is not

publicly available, however each recommended song is presented with a few attributes that motivate

Pandora’s recommendation choice. Tingle used these public attributes as the tags. Using this data,

an auto tagging system was created in conjunction with timbre and song features from the popular

Echonest API (ENT and ENS) [101].

In work by Turnbull, it was explained that tagging must be more comprehensive in the methods

used [1]. Not one is best for all situations. It is important to weight the strengths and weaknesses

of each type of system. A comparison of tagging methods is shown in Table 2.3. It was shown that

in combining approaches, results were better than the best performing single method. Subsequent

methods by Turnbull take this into account. Work presented in [102] uses social tags, web documents

and acoustic timbre features in order to create a query by text music retrieval system. The work

further proves that it is important to use multiple information sources.

Later work by McFee also attempts to improve an area that tagging systems usually fail, music’s

long tail. This refers to a great deal of available music listened to by only a few people. Collaborative

filtering methods work well at recommending popular music, but not as well at users more sparse

preferences. This work introduces a method to learn an optimal similarity function that allows music

in the long tail to still benefit from collaborative filtering based methods [103].

Tags generally refer to the song in its entirety. There have been a few methods however that take

temporal context into account. One such method is presented by Coviello [104]. This work models
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Approach Strengths Weaknesses

custom-tailored vocabulary small, predetermined vocabulary
Survey high-quality annotations human-labor intensive

strong labeling time consuming approach lacks scalability
collective wisdom of crowds create and maintain popular social website

Social Tags unlimited vocabulary ad-hoc annotation behavior, weak labeling
provides social context sparse/missing in long-tail
collective wisdom of crowds “gaming” the system

Game incentives produce high-quality annotations di�cult to create viral gaming experience
fast paced for rapid data collection listening to short-clips

Web large public corpus of relevant documents noisy annotations due to text-mining
Documents no direct human involvement sparse/missing in long-tail

provides social context weak labeling
not a↵ected by cold-start problem computationally intensive

Autotags no direct human involvement limited by training data
strong labeling based solely on audio content

Table 2.3: Strengths and weaknesses of tag-based music annotation approaches. (sourced from
[1])

time-series acoustic features with dynamic texture mixtures for each tag. Other work by Mandel

models the contextual relationships between tags and between tagged clips. Users agree more on tags

applied to clips temporally near one another, so using a Conditional Restricted Boltzmann Machine

(CRBM) can more accurately predict tags by taking context into account [105]. A CRBM is similar

to a regular RBM, but nodes in the current time step can be conditioned on another previous set of

nodes. This context smooths training data and allows an SVM to better rank clips on the smoothed

data than the original tags.

2.5 Designing Visually intuitive Feature Spaces

Creating visually intuitive feature spaces is a very active subfield within MIR. Using these represen-

tations, researchers employ both semantic content and audio content based methods in conjunction

with basic machine learning techniques to combine human annotations and audio feature represen-

tations of music in a shared visual analysis space. Spaces derived from human-tagged attributes

have the potential to follow a uniquely human organization, which may be helpful when designing

a human-interpretable space. However, they can only capture information humans have already

deemed important. Conversely, in designing a space from audio features, we may be able to capture

nebulous interactions that humans cannot easily deconstruct (i.e. rhythmic syncopation). An-
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other thing to consider is parametric vs. non-parametric reduction methods. In this section I will

overview a few methods used to create low-dimensional visual representations of high-dimensional

music-related data. More information about the parametric and non-parametric methods employed

in this thesis can be found in Section 4.4 and Chapter 9.

2.5.1 Spaces: Emotion

Some of the first work in space reduction for music-IR surrounded the representation of emotion in

music. It was represented by a set of 66 adjectives encompassed in 8 subgroups [106]. Later work has

added many more terms while more recent studies have been able to reduce these large dictionaries.

These reductions are optimized for the maximal description and discrimination of emotion [107].

The Music Information Retrieval Exchange (MIREX) contest, a large-scale competitive research

comparison and analysis contest, uses the widely accepted set of terms in Table 2.4 [108].

Clusters Mood Adjectives
Cluster 1 passionate, rousing, confident, boisterous, rowdy
Cluster 2 rollicking, cheerful, fun, sweet, amiable / good natured
Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding
Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry
Cluster 5 aggressive, fiery, tense / anxious, intense, volatile, visceral

Table 2.4: List of MIREX Music Emotion Terms

However, a low-dimensional continuous space was also developed to describe emotion through

multidimensional scaling (MDS) of sets of emotion semantic terms. This idea of a continuous emotion

space was first introduced by Russel and Thayer. It is known as the Valence-Arousal (V-A) Space

and is shown in Figure 2.11. When discussing emotion, happy versus sad temperament is referred

to as valence and higher versus lower intensity of that temperament is referred to as arousal [109].

There is sometimes a third dimension that relates to tension or kinetics as outlined in [110] and

[111] respectively.

2.5.2 Spaces: Performance Expression

Musicians creatively vary timing, dynamics, and timbre of the musical performance, independent

from the score, in order to communicate something of deeper meaning to the listener. For example,
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Figure 2.11: A representation of the V-A space. (Sourced from [7]).

a musician can alter tempo or change dynamics slightly to impart tension or comfort. Similarly, they

can alter the timbre of their instrument to create di↵erent tonal colors. All of these parameters add

an additional level of intrigue to the written pitches, rhythms, and dynamics being performed. With

a musician’s mastery of these various nuances in technique, they can communicate more abstract

concepts such as emotion and mood [111, 112], There is a large body of work that looks to quantify

these parameters, similar to emotion, in both semantic and continuous spaces.

Some of the most influential work in this area is the work by Mion, De Poli, and Canazza. They

performed a set of studies with the overall goal of quantifying expressive parameters in performance

and capturing them with low-level audio features. In [8], Canazza defines a space through which

expressive intent can be projected into two dimensions. This space is known as the Kinematics-

Energy (K-E) Space, and is similar to the Valence-Arousal space in design. The kinematics refer

to heavy and dark versus light and bright expressive timbre. The energy refers to soft versus hard

intensity. This space is shown in Figure 2.12. Using the extremes of this K-E space and the A-V

space, they prompt musicians to play representative examples of each. Then through sequential

feature selection (SFS), they find an optimal set of low-level expression-motivated audio features

that best classify the intended emotion [111]. They then further explore expressive communication

through a perceptual study and find that people are able to classify the di↵erent expressive intentions

of the musicians. They then try to link the a↵ective (A-V space) and sensorial (K-E space) domains
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in order to try and derive which sensorial attributes result in specific induced emotions [113]. This

links the expressive techniques used by musicians to the emotions their listeners perceive.

Figure 2.12: A representation of the Kinematics-Energy space. (Sourced from [8])

In work by both Repp and Windsor, it was stated that the combination of both timing and

dynamics play a large role in the aesthetic impression of perfomance [114, 115]. One way to quantify

this is the Tempo-Loudness (T-L) Space [9]. Its dimensions are relatively simple, tempo in beats per

minute (bpm) and perceptual loudness (relating to dynamics) in loudness sensation (sone). This

work by Langner presents multiple performances of the same piano piece by di↵erent musicians and

shows that this T-L space can capture expressive di↵erences as well as create a simple compact

snapshot of the pieces’ expressive evolution over time.

Figure 2.13: An example of the Tempo-Loudness Space. (Sourced from [9])
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2.5.3 Spaces: Non-Linear

Many classic techniques of dimensionality reduction are linear and parametric. Linear methods are

used to learn a set of components and corresponding activations with the objective of reconstructing

the original feature space through linear combinations. Non-linear, and sometimes non-parametric,

reductions such as Self-Organizing Maps (SOM) or t-Distributed Stochastic Neighbor Embedding (t-

SNE ) do not have this constraint and have been gaining traction in recent years for organizing and

visualizing high-dimensional data [116, 117].

Early work employing SOMs has shown functionality in creating music similarity spaces [54, 118].

More recently, t-SNE has been employed to learn feature space reductions in a stochastic, and non-

parametric manner [119, 120]. Because these spaces are non-parametric, it makes it di�cult to

define the meaning of each dimension. They are designed strictly to be similarity spaces, meaning

that similarity in the high-dimensional space is maintained in the low-dimensional space. They have

proven to be powerful for data organization and context informed retrieval due to their ability to

capture non-linear organizations (manifolds) of the data. A few examples shown in Figure 2.14 show

an organization of Ballroom dance styles and musical meter using a set of rhythm features and the

t-SNE reduction method.

(a) (b)

Figure 2.14: t-SNE projections of acoustic features in 2 dimensions for (a) duple/triple des-
ignation and (b) individual style classifications.
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Chapter 3: Data: Labels of Rhythmic Components and Style

For the majority of this work, the rhythmic component and style labels are defined and collected by

musical experts on a corpus of over one million audio examples from the Pandora R○ Music Genome

Project R○(MGP)1. In addition to the MGP, some evaluation is performed on more commonly used

datasets, such as the GTZAN Rhythm Dataset and the Ballroom Dataset.

3.1 The GTZAN Rhythm and Genre Dataset

The GTZAN Genre Dataset was originally introduced by Tzanetakis [5] for the classification of

music genre. The dataset includes 1000 songs and 10 genre classes each with 100 songs. The genres

included are:

• Blues

• Classical

• Country

• Disco

• Hip hop

• Jazz

• Metal

• Pop

• Reggae

• Rock

More recently an updated version of this dataset was curated that includes rhythm annotations

as well [121]. This is new dataset is known as the GTZAN Rhythm Dataset. This new set includes

the following additional labels:

• Tempo

• Meter

• Beat

• Downbeat

• Swing

• 2 vs. 3 Tatum-feel

In order to create a dataset that more closely approximates the Music Genome Project for

comparison, each of the meter attributes can be transformed into their logical meter classes (Duple,

1“Pandora” and “Music Genome Project” are registered trademarks of Pandora Media, Inc. http://www.pandora.
com/about/mgp

http://www.pandora.com/about/mgp
http://www.pandora.com/about/mgp
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Compound-Duple, Triple, Mixed) from the annotated time-signature fractions. These can then be

formulated as a multi-class discrimination problems or binary labels of the expression of each meter

type. The later more closely approximates the MGP labels outlined in Section 3.3.

3.2 The Ballroom Dataset

A set of classification tasks using the popular Ballroom Dataset [85] is performed in Chapters 5

and 6. The dataset contains audio examples that are each 30 seconds in length and labeled with

a specific ballroom dance style. This dataset was chosen because its labels apply directly to terms

that reference quantifiable attributes of the music rather than more nebulous attributes that relate

to cultural popularity (e.g., the pop genre). The styles included in the dataset are shown in Table

3.1.

Dance Style Count Tempo Meter Origin Characteristics
ChaChaCha 111 Moderate 4/4 Cuban syncopated
Jive 60 Fast 4/4 USA swing, rock & roll
Quick Step 82 Fast 2/4 USA syncopated
Rumba 98 Slow 4/4 Cuban ballad, syncopated
Samba 86 Moderate 2/4 Brazilian dense, syncopated
Tango 86 Moderate 4/4 Argentine march-like.
Waltz 110 Slow 3/4 Austrian groupings of 3
Viennese Waltz 65 Fast 3/4, 6/8 Austrian groupings of 3

Table 3.1: Classes of the The Ballroom Dataset.

3.3 The Music Genome Project

In order to obtain the best representations of music attributes available, I am working in conjunction

with Pandora Media Inc. The labels were defined and collected by musical experts on a corpus of

over one million audio examples from the Music Genome Project R○ (MGP) as part of the Pan-

dora R○ Internet radio recommendation service. The labels were collected over a period of nearly

15 years and great care was placed in defining them and analyzing each song with a consistent set

of criteria. Each track is labeled by musical experts on more than 500 compositional and cultural

attributes. These labels are held as part of the streaming media service’s trade secrets, and unfor-

tunately can not be made public. However, each analyst is heavily vetted and constantly monitored

for quality control of the labels. I will therefore treat each label as accurate ground truth.
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In this thesis, three types of MGP labels are explored: rhythm attributes, orchestration at-

tributes, and genre. In this chapter, a brief description of each attribute label is given for context,

but is by no means exhaustive. All labels are rated initially on a continuous scale. Due to the

nature of some ratings denoting only absence or presence of an attribute, a simpler binary version

is sometimes used for evaluation. The continuous labels rate attributes on a sliding scale according

to their relative dominance in the music. The binary labels (binarized versions of continuous labels)

discretely state an attribute absence or presence.

It is important to note that all labels represent only a single attribute. An absence or presence of

one attribute does not necessarily imply that another attribute is absent or present. Any number of

attributes can be present or absent simultaneously. Finally, there are some labels that do not apply

to certain pieces of music. When evaluating this type of label, examples that are not relevant to the

label context are ignored. However, when employing stacked approaches, such as the creation of a

shared music attributes layer in Chapter 8), their estimates will be used for all examples regardless

of context.

3.3.1 Rhythm Attribute Labels

The first type of labels describe compositional attributes of rhythm in music. These will be referred

to as the rhythm attribute labels. The targeted attributes are compositional constructs, such as the

meter, or well-defined components of the rhythmic feel, such as the presence of swing. Focus is

placed on the 10 rhythmic attributes in Table 3.2. Each attribute is initially rated on a continuous

scale. For model evaluation purposes the meter as well as the presence of swing, shu✏e and high

syncopation are binarized. Backbeat, danceability and relative tempo remain continuous ratings.

Relative tempo is not a strict BPM, but a general relative rating of the tempo from slow (largo,

adagio) to fast (allegro, presto).

3.3.2 Orchestration Attribute Labels

In addition to the rhythm attributes, another set of compositionally motivated attributes from the

MGP is explored in order to produce more robust models in certain contexts. These orchestration

Chapter 3: Data: Labels of Rhythmic Components and Style



39

Cut-Time Meter contains 4 quarter notes per measure with emphasis on the 1st and 3rd note
creating 2 felt beats. The tempo feels half as fast.

Triple Meter contains groupings of 3 with consistent emphasis on the first note of each grouping.
( 3
4 , 3

2 , 3
8 , 9

8 )

Compound-Duple Meter contains 2 or 4 sub-groupings of 3 with emphasis on the 2nd and 4th

grouping. ( 6
8 , 12

8 )

Odd Meter identifies songs which contain odd groupings or non-constant sub-groupings. ( 5
8 , 7

8 , 5
4 ,

7
4 , 6

4 , 9
4 )

Swing denotes a longer-than-written duration on the beat followed by a shorter duration. The e↵ect
is usually perceived on the 2nd and 4th beats of a measure. (1 . . 2 . a 3 . . 4 . a)

Shu✏e is similar to swing, but the warping is felt on all beats equally. (1 . a 2 . a 3 . a 4 . a)

Syncopation is confusion created by early anticipation of the beat or obscuring meter with emphasis
against strong beats.

Back-Beat Strength is the amount of emphasis placed on the 2nd and 4th beat or grouping in a
measure or set of measures.

Danceability is the utility of a song for dancing. This relates to consistent rhythmic groupings
with emphasis on the beats.

Tempo is speed of the music pulse. In this work, it is scored on a relative scale similar to the other
attributes rather than representing a direct beats per minute (bpm) rating.

Table 3.2: Definitions of the rhythmic attributes explored.

attributes are comprised of elements of the vocals, instrumentation, and sonority. This chosen

subset of 38 additional MGP attributes is designed to have a generalized meaning across all genres

(in western music) and map to specific and deterministic musical qualities. An overview of the

attributes is shown in Table 3.3. Once again, some are binarized (instrumentation-related) while

others remain continuous (timbre-related). Due to the proprietary nature of some of these labels, a

more in-depth discussion about each can be made upon request.

Vocal attributes denote the presence of vocals and timbral characteristics of voice (e.g., male, female,
vocal grittiness).

Instrumentation attributes denote the presence of instruments (e.g., piano) and their timbre (e.g.,
guitar distortion)

Sonority attributes describe production techniques (e.g., studio, live) and the overall sound (e.g.,
acoustic, synthesized)

Table 3.3: Abridged outline of the orchestration attributes explored.
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3.3.3 Genre and Culture Labels

The last set of labels are the genre labels. Each of the labels represents a distinct musical style.

While many are culturally motivated, they are not defined strictly by cultural popularity, such as

pop music in the traditional genre labeling task. In this work I explore a selected subset of 12 ‘basic’

genres and 47 additional sub-genres. ‘Basic’ genre is assembled as a mix of very expansive genres

(e.g., Rock, Jazz) as well as some more focused ones (e.g., Disco and Bluegrass), serving as an analog

to many previous genre experiments in MIR. A selection of genre labels and a simplistic high-level

organization for discussion purposes is shown in Table 3.4. ‘Basic’ genre and Jazz sub-genre lists are

outlined completely, while Rock, Rap, Dance, and World genres as well as Geo-cultural attribute

lists are abridged for proprietary sensitivity. Each of these genres is labeled on a continuous scale.

For evaluation of prediction models, the labels are converted to a set of binary attributes.

Basic Genre: Rock, Soul, Funk, Folk, Rap, Latin, Reggae, Country, Blues, Disco, Jazz, Bluegrass

Jazz Subgenre: Free, Cool, Fusion, Bebop, HardBop, Boogie, Swing, Afro-Cuban, New Orleans,
Acid, Brazilian, Smooth

Rock Subgenre: Light, Hard, Punk, etc.

Rap Subgenre: Party, OldSchool, Hardcore, etc.

Dance Subgenre: Trance, House, etc.

World Subgenre: Cajun, North African, Indian, Celtic, etc.

Geo-cultural (language, location): Spanish, Eastern European, Central Asian, etc.

Table 3.4: Some of the musical genres and subgenres used.

3.3.4 Testing/Training Sets and Evaluation

For most tasks in Chapters 7, 8, and 9, as well as Appendix B and C, model training and evaluation

was performed on a 70%:30% (train:test) split. The full MGP dataset used included more than 1.2

million examples. This yields a training set of approximately 840,000 examples and a testing set of

approximately 360,000 examples. The same training and testing set was used across all experiments.

The training/testing split was also chosen such that there were no artists represented simultaneously

in both sets. Many audio-driven tasks in Music-IR can be susceptible to Album or Artist e↵ects due
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to shared mastering techniques. This is mitigated by not sharing any artists between training and

testing sets.

In addition to the full dataset, a smaller subset of 50k examples was used for certain tasks

involving space visualization in Chapter 9. While the dataset was smaller than the full dataset, it

was sampled such that it contained similar label representation and distributions when compared to

the full set. Once again both training and testing folds were selected such that there were no shared

artists between the two.
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Chapter 4: Machine Learning

In this chapter I outline methods that can be used to predict the expert-labeled data from the

Pandora R○ Music Genome Project R○. When choosing models, it is important to weigh both the cost

of computation and e↵ectiveness of the classifiers or regressors. The corpus used in this work is very

large, containing more than one million examples. Furthermore, because many of the models will

employ acoustic features, the model input dimensionality is high. Taking this into consideration,

the methods employed must have tractability in computation time and resources, and must be

generalizable to large amounts of data. Because an evaluation of musical attributes at this scale

has yet to be performed, it is necessary to start with simpler linear methods. After evaluating

simpler methods, a set of non-linear methods is introduced. However, when selecting more complex

methods, the training and example prediction of models must be able to take advantage of parallel

computing architectures.

Finally, because because human centered music data is used, it is important to use models that

are trained with human-interpretable parameters and produce human-interpretable results. While

deep learning and neural network approaches are popular for big datasets, the learned mappings

to a feature space are not always musically intuitive. Because a facet of this thesis is to quantify

and capture components of musical rhythm from a grounded perspective, it is important that the

methods have intuitive interpretations that can be explained in the domain of music. This gives

insight into “how and why” rather than just solving a discrimination and regression task.

4.1 Linear Models

4.1.1 Linear Regression

Some of the attribute prediction tasks in later chapters require regression of continuous labels. These

continuous attributes are first predicted with least squares Linear Regression. The goal of linear
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regression is to fit a line to a set of data points and labels. A best-fit line is used to model the data;

A new unlabeled data point can be predicted by calculating its location on that line.

Given a dataset with features X and labels Y , a linear mapping is learned with intercept �0 and

slope �1.

Y = �0 + �1X (4.1)

Because each feature xi will not fit exactly on this line, each example can be represented by Equation

4.2. In this case ✏ refers to the error distance of the label yi to the estimated line.

yi = �0 + �1xi + ✏i. (4.2)

For each data point xi and label yi, the goal is to minimize the error ✏i. By using the mean of the

features x̄, the mean of the labels ȳ, the variance of the features �2
x, and variance of the labels �2

y,

the intercept �0 and slope �1 can be found such that the error ✏ (both positive and negative values)

over all examples sums to zero.

0 = N�
i=1

✏i (4.3)

The value for �1 (slope) is estimated using the covariance of X and Y (rise) and the variance of

X (range). The variances �2
x and �2

y of X and Y are shown in Equations 4.4 and 4.4. The name

least squares regression comes from the squared error (xi− x̄)2 present when finding these variances.

�2
x = 1

N

N�
i=1
(xi − x̄)2 (4.4)

�2
y = 1

N

N�
i=1
(yi − ȳ)2 (4.5)

The covariance ⌃ of X and Y is given in Equation 4.6.

⌃(X,Y ) = 1

N

N�
i=1
(xi − x̄)(yi − ȳ) (4.6)
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With the variances and covariance defined, the estimated slope �̂1 is given by

�̂1 = ⌃(X,Y )
�2

x

(4.7)

In order to find the estimated intercept �̂0, the recently found slope �̂1 can be used in conjunction

with the mean values of the data x̄ and ȳ. This is shown in Equation 4.9. An intuitive toy example

of linear regression is shown in Figure 4.1.

ȳ = �̂0 + �̂1x̄ (4.8)

�̂0 = ȳ − �̂1x̄ (4.9)

With estimates of �̂0 and �̂1 the model becomes:

Y = �̂0 + �̂1X (4.10)

10.25

Logistic Regression

0.50 0.75

0.5

1

Feature Value

La
be

ls

10.25

Linear Regression

0.50 0.75

0.5

1

Feature Value

La
be

ls

Figure 4.1: An example of linear regression.
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4.1.2 Logistic Regression

The Logistic Regression classification method is similar in motivation to linear regression, but with

the goal of classification of binary labels and not regression (the name is deceptive). A binary

prediction (or probability) of present (1) or not present (0) is desired.

The the predictor for linear regression with parameters �0 and �1 is shown in Equation 4.11.

Y = �0 + �1X = ��X (4.11)

This predictor is similar in motivation to Linear Regression, however Y is now constrained by

Y ∈ {0,1}. In order to accommodate this a sigmoid function is used. This is an S-shaped function

�(↵) with asymptotes at 0 and 1 and a value of 0.5 at the center. The sigmoid function is shown in

Equation 4.12. A plot of the sigmoid function is shown in Figure 4.2.

�(↵) = 1

1 − e−↵ (4.12)

6-3

Sigmoid Function

0-6 3

0.5

1

Figure 4.2: A sigmoid function
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In order to force the predicted label values Y to be Y ∈ {0,1}, the sigmoid function is applied to

the weights � and data X. The new formulation is shown in Equation 4.13.

Ŷ = �(��X) (4.13)

This forces Ŷ such that Ŷ ∈ [0,1]. The output Ŷ is still continuous though, and because of that, this

is interpreted as the probability of a desired positive class Ŷ = P (Y �X;�). The decision boundary for

evenly weighted classes becomes the point in the sigmoid where Ŷ = 0.5. Values Ŷ ≥ 0.5 are assigned

Y = 1 and values Ŷ < 0.5 are assigned Y = 0. The updated expression is shown in Equation 4.14,

with parameters � and features X. This boundary can also be shifted to accommodate a weighted

representation or over-representation of each class.

P (Y �X;�) = �(��X) (4.14)

Similar to linear regression, the model parameters � need to be learned in order to fit the sigmoid

to the logistic data. In order to estimate �, the maximum likelihood estimate (MLE) of Equation

4.14 must be found. Instead of fitting a line to the data, this can now be seen as fitting a line or

plane to a decision boundary, or the point where P (Y �X;�) = 0.5. Each feature dimension is also

fit separately, making each �i independent from one another. An intuitive toy example of logistic

regression is shown in Figure 4.3.

For high-dimensional data, an intuitive interpretation of the learned � is the weighting and

correlation of a feature to the probability of selecting a specific class. For example, if � is positive

and relatively large, it means that an increase in a specific feature leads the higher probability of

the positive class occurring, and it is really strong relationship. Relative weightings can inform the

classifier of the the importance of a feature. The sign denotes the features relation to a positive

or negative decision. Because uninformative features will have lower relative weights, they will

less e↵ect on the decision made. This allows logistic regression to be less a↵ected by the curse of

dimensionality. It also allows the use of logistic regression as an identifier of important factors as
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Figure 4.3: An example of logistic regression

they relate to a certain outcome. This can lead to an intuitive understanding of which features are

important when analyzing rhythm as well as which feature components best quantify rhythm as

interpreted by humans.

4.1.3 Using Large Datasets

In practice, on large datasets, models are trained using Stochastic Gradient Descent (SGD). Gradient

Descent is a generic way train a model by iteratively updating model parameters relative to a set

learning rate and recomputing an objective function with the goal reducing model error with each

update. Unlike standard Gradient Descent, which computes the error sum across on all the examples

before making an update, SGD computes the error and updates the parameters relative to the fit of

an individual example. This makes it possible to start tuning parameters without having to compute

large error sums across all examples. Because each example is seen independently, the error does

not always monotonically decrease from example to example. However, it will decrease over time,

and converge much more quickly than standard gradient descent. This can be used train a variety

of algorithms, including linear and logistic regression, by simply adjusting the learning rate and

objective function. Examples of gradient descent and stochastic gradient descent for a quadratic

‘bowl-shaped’ gradient is shown in Figure 4.4.

Chapter 4: Machine Learning



48

Gradient Descent Stochastic Gradient Descent

Figure 4.4: An example of standard gradient descent (left) and stochastic gradient descent
(right) for a quadratic bowl-shaped gradient surface. Arrows depict the model error trajectories.

For Linear Regression, an initial slope and intercept is estimated. Based on the learning rate

the slope and intercept values are updated in a manner to reduce the sum of the squared distance

of a training example to the estimated line (the model). This represents a least-squares loss. For

Logistic Regression a similar process is employed using logistic (log) loss.

4.2 Decision Tree Ensembles

4.2.1 Binary Decision Trees

A Binary Decision Tree is a structure that models features X and labels Y with a set of sequential,

binary decisions. An example binary tree is shown in Figure 4.5. This toy example displays whether

a music group should rehearse based the set of previous observations and motiving features of those

observations. These features and observations shown in Table 4.1.

Perform Soon? Time of Week Time of Day Rehearse?
X1 = Yes Sat&Sun Morning Y1 = No
X2 = No M-F Night Y2 = No
X3 = Yes M-F Morning Y3 = Yes
X4 = No M-F Morning Y4 = Yes

... ... ... ... ...
XN = Yes Sat&Sun Night YN = Yes

Table 4.1: Should the music group rehearse? The probability of rehearsal can be predicted
from past experience based on the imminence of a performance, the time of week, and the time
of day.

In order to select which features to split on, the information gain metric is employed. The feature

with the maximum information gain is the one chosen for the parent node split. Equations 4.15 and
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Time of 
Day

Time Of 
Day

Time of 
Week

Time of 
Week

Time of 
Week
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Day
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Figure 4.5: A binary decision tree is generated. The leaves terminate with the probability of
the positive class label (a rehearsal) present after traversal.

4.16 show the information gain in the context of trees. Successive splits are found recursively in

order to grow parent and child node branches of successive decisions.

Information gain is found through a di↵erence in entropy E of the labels Y with and without a

feature X. Where pc is the probability of a class c ∈ C in labels Y , the entropy E(Y ) of the labels

is shown in Equation 4.15.

E(Y ) =�
C

−pc log2 pc (4.15)

The information gain IG for a feature X with values Xv of all possible values v ∈ V is

IG(Y,X) = E(Y ) −�
V

�Xv ��X � E(Y �Xv) (4.16)

Creation of trees requires the use of all data in the training set and the knowledge of all features.

This can make for cumbersome training for very large datasets. Furthermore, because each successive

parental node lowers the variance of the data contained in its children, trees have the tendency to

over-fit the training data, resulting in poor test results. This over-fitting can be fixed with the use
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of ensemble methods, or the use of many trees simultaneously to make a joint decision. A couple

examples are Random Forests and Gradient Boosted Trees, which will be explained in Sections

4.2.2 and 4.2.3 respectively [122, 123]. These methods have been shown to be e↵ective in Music

Information Retrieval tasks in the past in both instrument and expression recognition [124, 125] as

well as genre recognition [126].

One big advantage of using trees is their ability to handle real and semantic valued data simul-

taneously. They can handle these types of data in both the feature space and the label space. Also,

the range of each feature does not a↵ect the features in other dimensions because feature salience

is evaluated using information gain. Another advantage is the nonlinearity in each tree. Because

the tree greedily learns many small decisions boundaries, they can learn complex, non-linear bound-

aries without the need to use tuned feature kernels. For datasets that have features that are very

high-dimensional, trees can be used as a form of feature selection and dimensionality reduction by

deciding which subset of features are best for discrimination based on the use of information gain

and the definition of feature splits.

Trees for Classification

The general formulation for the tree presented previously assumes a classification problem. A chosen

class of features with an unknown label is found by traversing all decisions in the tree and assigning

the class of containing the highest probability of occurrence in the lowest leaf. It is possible to build

a tree to perfectly classify data without the need for a probability decision. However, in practice

this leads to over-fitting the training data, leading to poorer test results.

Trees for Regression

Trees for regression are treated similarly to trees for classification. Given a set of continuous labels,

a split is formed in each feature dimension at the location that minimizes an squared error. The

feature split with the lowest mean squared error (instead of Information Gain) is chosen for each
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successive parent and child node. Given the label mean ȳ− and ȳ+ for each set of labels y ∈ Y+ and

y ∈ Y− around the left (-) and right (+) of split s respectively,

MSE(s) = �
y∈Y+
(ȳ+ − yi)2 + �

y∈Y−
(ȳ− − yi)2. (4.17)

When doing regression, the mean of all values present below each terminating leaf node is the

value given to an query example that traverses to that point.

Continuous Valued Features

Sometimes it is necessary for features to have continuous values, as is the case in most models

involving audio signal analysis. In order do deal with this, a few approaches are presented. Rather

than exhaustively choose split values, they can be chosen relative to the training points, with each

value denoting a split and a binary projection of features around that split. Each example and

respective split is treated independently. The choice of the candidate splits are not a↵ected by label

values, so this can be used for both classification and regression.

Another method relies on sorting the features in each dimension. A split candidate is chosen

at the midpoint between two consecutive sorted feature values that contain di↵erent discrete label

values. Basically, split candidates are placed at label transitions. A final split is then chosen based on

the maximum information gain of each of the candidate splits. Because this needs the understanding

of class labels, it can only be used for classification.

4.2.2 Random Forests

As stated before, it can be very slow to train large trees. Similarly, large trees can over-fit the

data because each parent minimizes the variance of the data around which each child can make a

decision. This is great for modeling the training data exactly, with virtually no training error, but it

can be disastrous at test time. A Random Forest can alleviate this problem. Instead of just one tree,

many are trained in parallel. Each tree is small, and contains only a subset of the features and data

(bagging). Because of this, each tree is di↵erent from one another, allowing for a greater capture

of data variance. Each of the decisions from each tree are combined in order to make an ensemble
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decision. This allows for better fitting of large datasets and allows for a distributed implementation.

Sub-sampling of data and features with smaller trees can reduce training time through distributed

computation as well as result in better models. This is one of the few times where the no free lunch

concept in machine learning is violated. Usually there is a trade-o↵ in performance versus cost. In

this example, both are improved [123].

Bagging

The concept of bagging refers to the use of only a subset of features and examples. Each tree in the

random forest is trained on only a subset of features across a subset of examples. This allows for the

creation of many general trees that can be fused later. It also alleviates the problem of over-fitting

on outliers.

Parameters

One downside to using trees is the large number of hyper parameters that need to be tuned. This

is where most of the training cost comes from. The list below gives a brief explanation of the

parameters used for random forests:

• number of features per tree

• number of examples used to train each tree

• number of trees in the “forest”

• tree depth, deep trees can lead to over-fitting.

Tree Combination: The Ensemble

The combination of many trees in a Random Forest is straightforward. Because each tree was trained

on a di↵erent set of data and di↵erent sets of features, and because trees are grown greedily, each

tree will be very di↵erent. A group decision can be found through a linear combination of each of

the decisions in the ensemble. An example of an ensemble decision is for classification and regression

is shown in Figure 4.6.

For classification, each terminating leaf of each tree has a multinomial probability distribution

of class labels. In order to combine trees, a query example is traversed through all trees. Each

traversal results in the terminal multinomial distribution of class labels. Each of these distributions
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Figure 4.6: Random forest tree ensemble examples for classification (a) and regression (b).

can be summed (emphasize disagreement) or multiplied (emphasize agreement). The class with the

highest probability is chosen.

For regression, the process is similar. Each terminating leaf of each tree has a value assigned to

it. In order to combine trees, a query example is traversed through all trees. Statistics of the value

at each of each of the terminating leaves can be used in order to estimate the continuous value label

of the input features.

4.2.3 Gradient Boosted Trees

A Gradient Boosted Tree is another tree ensemble model. In this method many trees are successively

learned hierarchically relative to the previous trees errors. This process is known as boosting with

each tree as a weak-learner. Each successive tree is learned based on the failure of others [122].

Intuitively, trees in a Random Forest are diverse and randomly crated with the motivation that

enough of them the will completely “shade” the feature space. In a Gradient Boosted Tree, one

encompassing tree shades as much of the feature space as possible. New trees greedily sprout in the

sun where previous trees do not shade.
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Boosting

The concept of boosting refers to the usage of many simple, inexpensive weak-learner classifiers in

combination to achieve a more powerful and complex classifier. In a Gradient Boosted Tree, the

weak-learner is a small tree. In boosting, each member of the ensemble of weak-learners is forced to

be an expert on the errors of it’s predecessor. Training examples are iteratively re-weighted based

on these errors. Classification errors of each predecessor are weighted more than the examples it

got right. The weighted decisions of each successive tree are aggregated in order to make the final

decision.

In the regression formulation, gradient boosted trees are learned through residual fitting. This

means that each successive regression split is found on the residual in the data by normalizing out

the mean of each previous split and fitting. The final model becomes the summed regression of all

trees. This sum re-adds the learned means into the data in order to model the original function.

This formulation is known as gradient boosting because as each tree is created in succession, the

error decreases. The goal is to choose parameters and trees that travel downward along this error

gradient. A visual representation of a gradient boosted tree is shown in Figure 4.7.

Y1 R1 Y1 R1 Y1 R1 Y1 R1

Y2 R2 Y2 R2 Y2 R2 Y2 R2

Tree 2 
Residual Tree

Tree 1 
Weak-Learner Tree

Figure 4.7: A Gradient Boosted Tree example.
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Shrinkage

In order to combat the increase in the gradient function, the learning rate can be changed. This

alters the weights given to positive and negative examples, making the tree learn faster or slower.

Using a smaller learning rate will take more steps to reach its optimal point in the error gradient,

however, the error it settles on will be lower than one at a larger rate. Each step is more incremental.

This process is known as shrinkage.

Stochastic Gradient Boosting

Using too many boosted trees in combination can lead to over fitting. In order to combat this, a

small sampling of features and training examples is used at each step. This is similar to bagging in

random forests and Stochastic Gradient Descent in Section 4.1.3. The gradient becomes a bit noisier,

but similar to the benefits of SGD, Stochastic Gradient Boosting reduces run time and creates a

more robust model.

Parameters

One downside to using trees is the large number of hyper parameters that need to be tuned. This

is where most of the training cost accumulates. The list below gives a brief explanation of the

parameters used for gradient boosted trees optimized through grid search and cross validation.

• number of trees

• learning rate (shrinkage)

• tree depth, deep trees can lead to over-fitting.

• minimum allowable samples in a leaf, prevents over-fitting

• number of features per tree (stochastic gradient boosting)

• number of examples used to train each tree (stochastic gradient boosting)

4.2.4 Hybrid Tree Ensemble Models

In addition to using tree ensembles directly for classification and regression, they can be used as a

feature transformation capable of learning complex feature interactions [127]. In a tree ensemble,

the activation of each terminating leaf can be transformed into a feature vector. This new feature
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vector can then be used in a simpler classification and regression model. An overview of this process

is shown in Figure 4.8.

Tree Predictions

Leaf Activation Features

Figure 4.8: Leaf activations of each tree in the ensemble become features for another model.
This learns interactions of branches.

4.3 Supervised Model Evaluation

4.3.1 Evaluating Classification Models

When evaluating and comparing classification models, it is important to measure how well your

system correctly predicts only the desired examples and avoids others. In order to evaluate this, a

few di↵erent measures of correctness must be computed, namely:

• True Positive (TP): Correctly classify a positive example (hit)

• True Negative (TN): Correctly classify a negative example (rejection)

• False Positive (FP): Incorrectly classify a negative example as positive (false alarm)

• False Negative (FN): Incorrectly classify a positive example as negative (miss)

Subsets of these correctness rates are used in combination to compute metrics to evaluate the

e�cacy of a classification system. These metrics will be explained in the following subsections.

Precision vs. Recall Metrics and Receiver Operator Characteristic Curves, along with inversely

weighting training by label occurrence, are ways to evaluate systems that have labels that are not
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evenly distributed. For example, if one class is very unlikely, predicting that class is absent 100% of

the time would provide high raw accuracy, but tell you nothing about what the system is learning.

Precision vs. Recall Metrics

One way to see if a recommendation is accurate is through the F-Score or F-Measure. This is a

metric of recommendation precision vs. recommendation recall. A good recommendation system has

a high F-Score, meaning that all of the right items are recommended without recommending those

that are not relevant. F-Score is the harmonic mean of precision p, the number of correct positive

results retrieved over all positive (p = TP
TP+FP ) results estimated, and the recall r, the number of

positive results that should have been retrieved (r = TP
TP+FN ). This is shown in Equation 4.18

F1 = 2
pr

p + r
(4.18)

The score can also be weighted by the amount of desired precision or recall. The general form

of the Fn score is shown in Equation 4.19. Values of 1 > n > 0 weights precision more than recall,

and values of n > 1 weights recall higher than precision.

Fn = (1 + n2) pr

n2p + r
(4.19)

In addition to a single F-Score, a Precision-Recall Curve (pr-curve) can be computed. This curve

is generated by sweeping the probability of classification threshold and evaluating the precision and

recall at each of these probability threshold points. The area under the pr-curve (AU-PR) can be

used to evaluate a classification system. By sweeping the threshold, this metric is less sensitive to

class imbalance. An area of 1.0 represents perfect classification. An area of 0.0 represents a random

classification. AU-PR is a beneficial metric because it can be used to evaluate the system without

having to set a static classification threshold. When reporting a single F-Score, a threshold sweep

is performed and the maximum score relating to that sweep is reported. In that case, the decision

boundary tends to shift to correct for the class imbalance.
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Receiver Operator Characteristic Curves

Another metric for evaluation of classification models that deals with class imbalance is the Receiver

Operator Characteristic Curve (ROC curve). Similar to the pr-curve, a threshold sweep is performed.

The true positive rate ( TP
TP+FN , identical to recall) is plotted vs. the false positive rate ( FP

FP+TN ).

The area under the curve (AUC) becomes another measure of accuracy. An AUC of 1.0 means

perfect classification. An area of 0.5 means random classification. This is another metric that can

be used to evaluate the system without having to set a static classification threshold.

4.3.2 Evaluating Regression Models

In order to evaluate the model, one can compare the mean absolute error and mean squared error of

the data contained in the model vs a set of supervised regression experiments. If these numbers are

similar, it will show that the data is not over-fitting. If these numbers are vastly di↵erent, it could

represent and over-fitting of the data. Another way to test the model is the r2 metric. This is a

measure of the explained variance versus the total variance. The explained variance is the variance

the model captures, and the unexplained variance is what is left over. For each value xi a point ŷi

is calculated based on the estimates of �̂0 and �̂1.

ŷi = �̂0 + �̂1xi. (4.20)

The squared error ✏2res of the residual is given by the squared di↵erence of the calculated value

ŷi and true value yi.

✏2res = 1

N

N�
i=1
(yi − ŷi)2 (4.21)

This is compared to the variance �2
y of all data in Y .

�2
y = 1

N

N�
i=1
(yi − ȳ)2 (4.22)

The measure of explained variance r2 is the percentage of total variance contained within the

model. If the error of the model is low compared to the variance of the data, the model is explaining
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a high percentage of the variation in the data, making it a good model. If the residual error is equal

to the variance of the raw labels, the model is representing a low percentage of the variation in the

data, making it a poor model.

r2 = 1 − ✏2res
�2

y

(4.23)

4.4 Visualizing High Dimensional Data

The previous sections outlined methods to capture features of rhythm in music and evaluate their

e↵ectiveness on expertly-labeled, specifically-targeted, attributes. However, most peoples’ percep-

tion of similarities and di↵erences in rhythm does not rely on individually quantifying each of the

components that construct it. In this section, I will outline a few methods that try to capture

rhythmic similarity and dissimilarity perception on a set of low dimensional criteria. These sets

of criteria will be defined by a resulting subspace created by reducing the dimensionality of the

rhythmic attributes, the audio features that saliently define these attributes, and the styles defined

by both the labeled attributes and the salient audio features. In order to achieve this, a few widely

used dimensionality reduction techniques are explored. The goal of dimensionality reduction is to

maintain the high dimensional di↵erences or similarities in a lower dimensional space. In the later

chapters, I explore two classes of reduction techniques: parametric basis decompositions (PCA, ICA,

NMF, etc.) and non-parametric similarity mappings (t-SNE). In the non-parametric method of t-

Distributed Stochastic Neighbor Embedding (t-SNE ), distributions are used to model local distances

in the high dimensional space. A low dimensional space is generated that maintains these distance

distributions and reproduce local similarity and global dissimilarity.

4.4.1 Basis Decompositions

One class of dimensionality reduction techniques, basis decomposition, involves the formulation

of basis vectors and activation vectors. The basis vectors are template-like components that can

be summed to re-create an original example based on their relative activations for that example.

Multidimensional Scaling (MDS) is a technique used to model dissimilarities in data and Principal

Components Analysis (PCA) is MDS using euclidean distance as a measure of dissimilarity. In PCA
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a set of orthogonal bases and corresponding activations are found such that the variance along the

activation of these bases is maximized. Independent Components Analysis (ICA) creates a set if

independent signal components optimized across higher order statistics (i.e., kurtosis) as opposed to

the mean and variance (PCA).

Non-Negative Matrix Factorization (NMF) is similar in interpretation, with a learned set of non-

negative bases being summed in order to recreate and example. NMF is more constrained in that

the bases and activations are strictly non-negative, resulting in an additive summation of bases, and

thus, a more interpretable set of basis components.

MultiDimensional Scaling and PCA

In Multidimensional Scaling (MDS), the goal is to model high-dimensional data in a low-dimensional

space. In order to do this, it tries to preserve the di↵erences of points in the high-dimensional and

low-dimensional spaces. If the distance metric used is euclidean distance, MDS will be equivalent to

PCA. However, MDS has the ability to use any method of dissimilarity. Alternatively, one can also

invert a measure of similarity and transform it to a dissimilarity metric and use it for MDS [128].

Classical MDS starts with a data dissimilarity matrix D obtained from the chosen di↵erence

metric. This matrix contains individual dissimilarities dij from each of the examples to all other

examples, where N is the number of examples, i ∈ {1, ...,N}, and j ∈ {1, ...,N}. A centering matrix

CN is applied to the matrix D in order to assign a relative anchor location of our dissimilarities to

the origin of the new space. This centering matrix CN is shown in Equation 4.24, where 1 a matrix

with all elements having the value 1.

CN = I − 1

N
11� (4.24)

This centering matrix CN is applied to the dissimilarity matrix D to create a new matrix B to

represent the centered data. This is shown in Equation 4.25.

B = −1

2
CNDCN (4.25)

Chapter 4: Machine Learning



61

With this centered data, a matrix Xm of new dimensionality m = {1, ...,N} can be estimated. The

matrix B can be formulated as B =XX�, and can be factorized through eigenvalue decomposition.

By extracting the m largest eigenvalues �n, n ∈ {1, ...,m} in ⇤m and the corresponding eigenvectors

vn, n ∈ {1, ...,m} in Vm, a lower-dimensional approximation for Xm can be estimated. This process

is shown in Equations 4.26, 4.27, 4.28, and 4.29.

B =XX� (4.26)

XX� =V⇤V� (4.27)

XmX�m =Vm⇤mV�m (4.28)

Xm =Vm⇤1�2
m (4.29)

Independent Component Analysis

Previously, the goal of PCA was to minimize the covariance of the data and create a set of orthogonal

vectors ordered by high intra-dimensional variance. The means that PCA is useful when the data

is Gaussian and linear. However, this is not always the case, so higher-order statistics more than

just the 1st (expectation, mean) and 2nd moments (variance) must also be considered. Rather

than minimizing the covariance as in PCA, Independent Components Analysis (ICA) uses higher

order statistics to minimize mutual information of the output. ICA creates a set of independent

components of non-Gaussian signals or features. However, due to the reliance on higher order

statistics, variance of each component cannot be determined, and the order of dominant components

can not be ranked. Furthermore, each of the resulting dimensions do not need to be orthogonal [129].

The goal of ICA is to find a set of components s and a square mixing matrix A such that a signal

or feature space x can be captured through the combination of s and A. This follows the standard
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component/activation formulation shown in Equation 4.30

x =As (4.30)

In order to determine each of the components from n example observations {x(n);n = 1, ...,N} an

un-mixing matrix W =A−1 is estimated. The sources of an example s(n) can be recovered through

the expression shown in Equation 4.31.

x(n) =Ws(n) (4.31)

Given that there are M sources we can denote the contribution of each source in each example

as {s(n)m ;m = 1, ...,M}. Where wT
n denotes the n-th row of W, the m-th source can be recovered by

the expression in Equation 4.32.

s(n)m = wT
n x(n) (4.32)

Non-Negative Matrix Factorization

The goal of Non-Negative Matrix Factorization is to factorize a matrix V into two matrices W and

H. This factorization is shown in Equation 4.33, where n is the number of examples, m is the

number feature dimensions, and r is the number of basis components to be learned.

V[n×m] ≈W[n×r] ×H[r×m] (4.33)

NMF is performed by iteratively updating W and H and minimizing a cost function that relates

W ×H to V. This cost function is usually defined in terms of the euclidean distance or the K-L

divergence between W ×H and V. In practice rows of H are a defined number non-negative basis

components, or a set of “feature parts”, learned across all examples. The columns of W are non-

negative activations of those components, or “feature part” emphasis vectors. The dimensionality

of the original feature space can be reduced by selecting the number of bases to be learned, and

treating the activations as the new feature space. This e↵ectively reduces the dimensionality in a
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manner that is still representative of the original structure, with components representing a set of

intuitive pieces that can recreate an estimation of an example through a sum that is scaled by the

activations [130, 131]

NMF can be preferred over PCA because PCA only employs a weak orthogonality constraint.

The PCA representation is allowed to use cancellations as well as additions of components in order

to represent the original space, which is not always intuitive. Because NMF enforces non-negativity,

each of the components can be more intuitively seen as additive parts, or building blocks, that can

be summed to estimate the original feature space. This can give more understandable mappings of

the original feature space, and allow for more concrete judgments of the original features and their

behavior across a variety of tasks.

4.4.2 t-Distributed Stochastic Neighbor Embedding

Similar to the dimensionality methods suggested so far t-Distributed Stochastic Neighbor Embed-

ding (t-SNE ) attempts to build a map in which high-dimensional relationships are maintained in

a lower-dimensional space. It aims to preserve local pairwise relationships, and focus less on large

global relationships. However, instead of focusing on di↵erences as in MDS, the t-SNE algorithm is

motivated by maintaining local similarities between points.

Definition of t-SNE

The process of t-SNE is as follows. In a high-dimensional space, it is important to preserve local

similarities of those high-dimensional objects. Given a point in space xi, a Gaussian distribution is

defined and centered at that point xi. The similarity is then the normalized measure of density pi,j

of all other points under this Gaussian. The density for pi,j is shown in Equation 4.34.

pi,j = exp �−��xi−xj ��2
2�2 �

∑k∑l≠k exp �−��xk−xl��2
2�2 � (4.34)

This provides a set of probabilities pi,j that measures the similarity of a point (xi, xj). It

represents the probability distribution over pairs where the probability of picking a pair is the

similarity metric. Close points in the high-dimensional space will have a large joint probability pi,j ;
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far points will have a small joint probability pi,j . However, in practice, the joint distribution pi,j is

not tractable to compute directly, so instead, the conditional probability pi�j is used to find it. This

is shown in Equation 4.35.

pi�j = exp �−��xi−xj ��2
2�2

i
�

∑i≠j exp �−��xi−xj ��2
2�2

i
� (4.35)

This reduces the normalization from being performed over all points and only focuses on point

xi. Additionally the bandwidth of the distribution can be scaled by �i. This allows for a fixed

conditional perplexity and can ensure a set number of points fall within the mode of the Gaussian.

This allows the model to adapt to di↵erent local densities throughout the space. This also becomes

a clustering parameter that also allows the model to more tightly or loosely “squeeze” similar points

in the eventual lower-dimensional subspace.

Even though the joint probability pi,j is hard to compute directly, it is still necessary as the

measure of similarity. Assuming that the conditionals pi�j and pj�i are symmetric, they can be

averaged in order to find the joint distribution. This is shown in Equation 4.36.

pi,j = pi�j + pj�i
2N

(4.36)

The goal of t-SNE is to maintain a similarity obtained with a joint probability pi,j in a high-

dimensional space in the low-dimensional space. The distribution in the low-dimensional space qi,j

is learned with the goal of keeping the similarities the same. The distribution in the low-dimensional

space qi,j is shown in Equation 4.37.

qi,j = exp(−��yi − yj ��2)∑k∑l≠k exp(−��yk − yl��2) (4.37)

In order to optimize similarity of the low-dimensional space to the higher one, the K-L divergence

is used. If both spaces allow for similar probability distributions for each data point, while little

can be said about global structure, local structure is strongly preserved. Because the local structure
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is preserved, it can cause the distance of further points to expand. An intuitive example of this is

shown in Figure 4.9.

x1 x2

x3

A

B

C

y1 y2 y3
A B

D

Figure 4.9: t-SNE maintains small distances, but can expand further ones.

Because of this increase in far distances, it is necessary to model the distribution of points in the

low-dimensionality space qi,j such that it will still contain the probability mass in the center but

have longer tails. To accommodate this warping of far points, the students-t distribution is chosen

as the low-dimension model q′i,j . The new expression for the students-t motivated distribution q′i,j
is shown in Equation 4.38.

q′i,j = (1 + ��yi − yj ��2)−1∑k∑l≠k(1 + ��yk − yl��2)−1 (4.38)

4.4.3 Exploring Non-paramertic Spaces

Unlike PCA or NMF, the resulting space from methods such as t-SNE are non-parametric, meaning

it is di�cult to interpret what the dimensions mean in terms of the original feature space. The only

assumptions that can be made are that points close to each other in the t-SNE space are mapped

as such because they were close in the original feature space. In PCA or NMF, it was easy to

see how each of the basis components relate to the original features, and through their activations,

it is possible to intuit an understanding of the activation space based on how much each of each

component was present in an example. This is not true of t-SNE, so a method to explore and

understand the new space in terms of the original feature space is desired. In order to accomplish

this, a clustering inspired method can be employed. Based on the clusters and their statistics in the

t-SNE space, representative cluster information in the original feature space can be generated. I will

motivate this proposed process through a simple toy example. Later, in Sections 4.4.3 and 4.4.3, a

few examples using real data are presented.
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Given a dataset of high dimensionality, t-SNE allows for the creation of a non-parametric low

dimensional space. In this space, it is important to remember that only local similarity is preserved

in a meaningful way. An example of this projection in 2 dimensions is shown in Figure 4.10.

Figure 4.10: 2 dimensional t-SNE projection of a toy example.

Because t-SNE maintains local similarities between points, clustering in the t-SNE space can

provide a way to create collections of similar points and separate them from globally non-similar

ones. Doing k-means clustering for k = 4 clusters for the toy data is shown in Figure 4.11. When

using k-means clustering, each point can be assigned to a cluster based on its distance to a cluster

mean. Cluster assignment and computation of the mean is an iterative process. The process finishes

when the objective of minimizing intra-cluster (inside cluster) distance and maximizing inter-cluster

(between cluster) distances is met. The data in each cluster can be summarized by the value at its

center of mass (cluster mean).

Because t-SNE is a non-parametric projection, the location of the means in t-SNE space can

not be projected back to the original feature space. However, in order to understand the features’

placement in the t-SNE space, this projection, or an estimate thereof, is desired. Once again, because

t-SNE is designed to preserve local relationships, local similarity of examples in the original space

should be preserved in the t-SNE space. Therefore, because of those local similarities, taking the

mean of similar (close) points in the t-SNE space should be analogous to taking the mean of similar

points in the original feature space. In order to generate a cluster mean the original feature space
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M1
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M4

Figure 4.11: K-means clustering (k=4) of the toy example in the t-SNE space

analogous to the mean in the t-SNE space, a set of n = 3 Nearest-Neighbors relative to each cluster

mean can be selected. An visual representation of this selection process is shown in Figure 4.12.

M1

M2

M3

M4

Figure 4.12: Nearest neighbors of the cluster means in t-SNE space can be used to approximate
cluster means in the original feature space.

It is possible to find the mean in the original feature space using the mean of all data points in

a t-SNE cluster. However, this will provide a less accurate snapshot of the data point due to the

long-trailed nature of similarity versus di↵erence in the t-SNE space. As the clusters expand through

the t-SNE space, the notion of local similarity is no longer preserved, making it less fundamentally

sound to describe the cluster mean in terms of the original space. If the cluster mean point existed

in the original space, it would only be similar to the local points surrounding it. Therefore, when
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estimating that projection, we should only use a small number of locally similar points, hence the

Nearest-Neighbors approach.

An Intuitive Example

In this section, I provide a more intuitive example using a subset of 10k examples from the MNIST

hand written digit dataset. Each example is a vectorized version 28x28 grayscale image of a hand

written digit from 0-9. The steps to create the t-SNE reduction are as follows [117]:

1. select 10k subset of examples at random

2. vectorize each 28x28 gray-scale image to a single 784 dimensional feature vector

3. perform PCA to obtain 30 components to reduce dimensionality of data

4. perform t-SNE on the new 30 dimensional feature space to obtain a 2-D projection (Figure 4.13)

Figure 4.13: 2D Projection of MNIST using t-SNE. Ground truth labels are shown in di↵erent
colors.

Because t-SNE is a non-parametric projection, relying only on similarity, it is hard to define

what di↵erent locations in the space refer to. In order explore the space, I implemented the methods

described previously in Section 4.4.3. The steps are as follows:

1. perform k-means clustering in t-SNE space (Figure 4.14).

Chapter 4: Machine Learning



69

2. find a set number of the nearest neighbors closest to each cluster center.

3. take the mean of the cluster center neighbors in the original feature space(Figure 4.15).

Figure 4.14: 2D Projection of MNIST using t-SNE. k-means clusters and cluster centers (letter
labels) are shown.

Figure 4.15: The means of the cluster center nearest neighbors in the original feature space
are shown.

In this example, it is seen that the estimated cluster centers strongly resemble the di↵erent digits.

While some clusters (i.e., cluster B) combine sometimes di�cult to distinguish numbers (4 vs. 9), it

also is good at distinguishing di↵erent types (slanted, looped) of the same number (0:A&J, 1:H&K,

2:N&O, 4:B&G, 6:C&E, 7:L&M). This provides some evidence that similarity is focused on the

geometric shape of each digit. Similarly shaped digits are placed close together.
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A Rhythm Example

In this example, a t-SNE space is learned from rhythm acoustic features. Each of the rhythm features

is described in more detail in Chapter 6. The t-SNE space and a selection of 5 of the nearest neighbor

means is shown in Figure 4.16.
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Figure 4.16: Rhythm features are reduced using t-SNE and candidate points are selected (left).
From those candidate points, nearest neighbor means are computed in the rhythm feature space
(right). A subset of 5 (from 15) means is shown.

This rhythm feature reduction example shares similarities with the handwritten digit example

(Section 4.4.3). In the digit example, each cluster represents a di↵erent digit or handwriting geom-

etry. This is seen in the rhythm example as well. Clusters show 8th note pulse (B), 16th note pulse

(E,L,N), triplet pulse (C) and even the presence of a slight 32nd note pulse (L). Similar to some digit

clusters having di↵erent handwriting geometry (i.e., slanted) in the written digit example, di↵erent

types of the same pulse division show up in the rhythm example. Clusters E, L, and N all show a

16th note pulse. However in the Beat Profile, E and L have tighter spikes than N, suggesting that

they have a more consistent (metronomic) interpretation of the pulse. The broader hills suggest a

more varied, wide pulse interpretation. There are also di↵erences in the Mellin Transform and The

Tempogram Ratios across all three, suggesting that the repetition of notes across beats within a bar

vary di↵erently (i.e., di↵erent interpretations of meter, backbeat, syncopation)

Chapter 4: Machine Learning



71

Chapter 5: Preliminary Study of Rhythm Features and Rhythmic Style

5.1 Overview

Humans identify with basic components of melody and rhythm in order to describe and di↵erentiate

songs. With these simple components, one can usually recognize higher level concepts such as the

style and other expressive components of a piece of music. Previous work in the MIR field has

studied both style and expression of a song as a whole, but few e↵orts focus on deconstructing and

quantifying these individual components to discover the specific roles that each of them play. In this

set of preliminary experiments, I explore a new feature representation designed to capture rhyth-

mic elements in acoustic music signals and provide evidence surrounding its ability to distinguish

rhythmic style. This proposed Rhythmic Style Histogram Feature (RSHF) is a probabilistic model

of Inter-Onset-Intervals (IOI) quantized to Tatum positions between estimated beat locations across

multiple frequency bands.

5.2 Rhythmic Feature Design

In order to represent rhythmic style, the RSHF is designed to probabilistically model inter-onset-

intervals across multiple frequency bands. The signal flow of the RSHF construction is shown in

Figure 5.1.

5.2.1 Deriving the RSHF

The percussive component of Harmonic Percussive Source Separation (Figure 5.1a) is first computed

[13], and beats are estimated1 from the percussive signal [33]. The percussive power spectrum is

then quantized into twelve (least common multiple of duple 16ths and triple 8ths) equally spaced

bins between successive beat locations (Figure 5.1b).

The Tatum aligned spectrum is processed using a coarse Mel-spaced filter bank. The output of

each Mel-filter becomes an independent onset signal Xf [t], where f is the filter channel and t is

1https://github.com/bmcfee/librosa
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Figure 5.1: RSHF design and calculation.

the Tatum position (Figure 5.1c). The onset detection signals are then modified by subtracting the

output of a moving average filter with a window length w and a tail multiplier m, yielding

Yf [t] =Xf [t] − ∑t+w
k=t−mw Xf [k]

mw +w
. (5.1)

Onsets are defined as the local maxima of the filtered signals Yf [t] within a window of length w.

The calculation of the onset positions is similar to the method described in [22].

Using the Tatum-aligned onset positions, the IOIs for each Mel-frequency band are calculated

(Figure 5.1d). The raw RSHF feature becomes a stacked set of histograms denoting the empirical

probability of the IOI values for each Mel-frequency band. An example of this feature is shown in
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Figure 5.2. In the lower frequency range, there is more probability mass in Tatums that are at 1/4

and 3/4 of the beat. This shows that both 16th notes and dotted 8th notes are common. In this

example, it is representative of repetitive swing-like pattern in the bass drum composed of a dotted

8th note followed by a 16th note. In the higher frequency components there is high probability for

IOI equal to 1/2 of a beat. This means that there is likely a steady 8th note pulse, played possibly

by a hi-hat or ride cymbal.

It is important to note that the RSHF is sensitive to the quality of the onset detection function

and the beat tracker employed as part of the front-end system. Errors in the beat tracking may

lead to improper binning in the metrical divisions defining the Tatum-aligned spectrogram in Figure

5.1C.

Figure 5.2: Rhythmic Style Histogram Feature.

5.3 Feature Salience Experiments

In order to test the RSHF, a set of both supervised and unsupervised machine learning experiments

are performed. These experiments show that the feature has the potential to predict previously

known intuitions about rhythm and style as well as reveal meaningful correlations learned directly

from data that are sometimes di�cult to quantify. It is important to note that while the following

results are not state of the art in this stand-alone context, the RSHF is definitely salient, and has

the potential to improve and inform other systems and tasks [58].

A set of classification tasks using the popular Ballroom Dataset [85] is performed. The dataset’s

audio examples are 30 seconds in length, and are labeled with a specific ballroom dance style. This

dataset is chosen because its labels apply directly to terms that reference quantifiable attributes of
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the music, and not to cultural popularity (e.g. the pop genre). More information about this dataset

can be found in Chapter 3.

5.3.1 Supervised Experiments

The goal of the first supervised experiment is to classify the Ballroom Dataset with respect to the

given ballroom style label. This is performed using an Support Vector Machine (SVM) classifier with

a Radial Basis Function (RBF) kernel. The dataset is split into 30% for test and 70% for training

and the parameters of the model are fit using 10-fold cross validation of the training set. Results

for style classification are presented in Table 5.1. This task has been performed by many others

previously in [132, 45, 60] with classification results surpassing 90%. The goal of this work is not

to solve this task specifically, but to show the RSHF’s salience in this domain. It was also shown

that tempo alone is a good descriptor of styles on the Ballroom Dataset [45]. The beat-tracking

algorithm inherently includes an estimate of tempo. By including that estimate along with the

RSHF, classification is improved.

Feature Accuracy Alone Accuracy with Tempo
RSHF 0.562 ± 0.035 0.755 ± 0.017

Table 5.1: Accuracies in the style task for the raw RSHF and the best performing reductions.

In the second experiment a duple feel vs. triple feel discrimination is performed using the same

experimental setup. By adding tempo, classification accuracy is improved once again. These results

are shown in Table 5.2.

Feature Accuracy Alone Accuracy with Tempo
RSHF 0.831 ± 0.017 0.937 ± 0.033

Table 5.2: Accuracies in the duple vs. triple task for the raw RSHF and the best performing
reductions

5.3.2 Unsupervised Experiments

In certain analysis tasks of expression and style, hard labels are not su�cient to describe a certain

musical phenomena. It may be necessary for expression and style components to sit in a continuous

space and employ unsupervised methods to find meaningful correlations and relationships in the
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data. In order to test the RSHF’s e↵ectiveness in this unsupervised domain, a set of simple k-means

clustering experiments is performed (k = 2 and k = 4).

In order to explore the cluster space, the RSHF feature is shown along with the annotated ground

truth labels for style and feel in Figure 5.3. The 96-dimensional feature space is visualized using

t-distributed Stochastic Neighbor Embedding. t-SNE is a tool for visualizing high-dimensional data

by preserving the distance between points in a lower-dimensional space. More on t-SNE can be

found in [117] and in Chapter 4.4.2. Notice that while the di↵erent classes of style-labeled and

feel-labeled data overlap, each occupies a unique area throughout the space.

(a) (b)

Figure 5.3: The projections of the raw RSHF feature into 2 dimensions for (a) duple/triple
designation and (b) individual style classifications.

In order to capture these empirical observations organically, k-means clustering is performed on

the RSHF. The results of the unsupervised clustering is shown in Figure 5.4. The percentages of

the original style labels contained within a specific cluster are shown for all clusters. In the k = 2

clustering, the somewhat obvious separation of the convex and concave arc structures in the data

occurs. The complex and more dense styles cluster apart from the simpler straight-forward styles.

As the number of clusters increases to k = 4, each of the styles start to separate. Jive and Viennese

Waltz separate from the other dense rhythms, which can be attributed to the triple and compound

meters of Waltz and Jive versus the simple meters of Quickstep, Rumba, and Samba. The more

straight-forward rhythmic styles also start to split. Tango and ChaChaCha still group tightly due
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to the fact that their rhythms are composed of very similar structures with a heavy emphasis on the

beat. Both Waltz styles also start to separate into multiple groups. Some of the Viennese Waltz

and Waltz rhythms group together in their own cluster, while others tend to group with other more

similarly dense and less dense styles.

(a) (b)

Figure 5.4: The percentage of each style label in each k-means cluster for (a) k = 2 and (b)
k = 4.

5.4 Conclusions

The Rhythmic Style Histogram Feature captures musically informative patterns in a compact form,

leveraging Tatum-aligned IOI interval histograms over multiple Mel-spaced frequency bands. Through

a set of supervised and unsupervised machine learning experiments, I showed that the RSHF is in-

formative for the task of rhythmic style classification and analysis. The RSHF has many future

implications in the domain of rhythmic style analysis as a whole as well. Because the RSHF feature

is a probabilistic model and intuitively maintains rhythmic components, it can be informative in

the generation of rhythmic styles. This generation is also tunable among di↵erent frequency bands,

allowing it to capture and synthesize rhythms that have contrasting low pitched and high pitched

components, such as a kick drum vs. a snare drum.
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Later chapters in this thesis are modeled on work presented in each section of this chapter. While

this chapter’s work is no-longer novel in and of itself, it serves as preliminary overview that motivates

and touches on much of the work in the chapters to come.
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Chapter 6: Rhythm Acoustic Features

6.1 Overview

In this chapter, I outline a set of newly developed acoustic features that aim capture rhythmic

attributes automatically in music audio signals. These features are designed to be tempo-invariant,

deterministic rhythmic descriptors that represent specific elements of the meter and rhythmic feel

(i.e., swing). The descriptors are first evaluated and benchmarked to previous work with the widely-

used meter and style classification tasks using the Ballroom Dataset and the GTZAN Rhythm Dataset

rhythm annotations. Many of the features involve estimates of tempo for normalization, so the e↵ects

of these tempo estimates will be outlined as well.

The fundamental components of rhythm are metrical structure, tempo, and event timing [133].

There is a large body of prior work that attempts to estimate these components [33, 34, 85, 44],

but in extracting only beats, tempo, and meter much of the rhythmic subtlety and feel is discarded.

A mid-level representation known as the accent signal [21], which measures the general presence of

musical events, is better suited to represent this rhythmic subtlety. However, the tempo, beat, and

meter estimates are still beneficial, as they can provide important temporal context to rhythmic

patterns derived from the accent signal. For example, the frequencies of periodicity in an accent

signal can be used to infer beats per minute, and when normalized by an estimate of tempo, directly

relate to musical note durations [53]. The accent signal can also be quantized and viewed in the

context of beats or measures in order to capture discrete instances of rhythm patterns [132, 119]. In

other work, Holzapfel introduced the Mellin Scale Transform as both a tempo-invariant and tempo-

independent method for describing rhythmic similarity. Unlike previous methods, the transform

achieves tempo-invariance by design rather then normalizing by a tempo estimate [60].

Most of the previous work in capturing rhythm has relied on evaluation through the classification

of a generalized musical style or genre, while simultaneously focusing on specific aspects of rhythm in

the feature design. Evaluation is usually performed with the Ballroom Dataset of dance styles [134],
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which more precisely represents rhythm than a dataset that is labeled with basic genre. However,

this remains a high-level approach with little regard to the meaning of the specific aspects of rhythm

inherent in the music. As a result, researchers have started to overfit and exploit phenomena

of the dataset rather than capture the attributes that relate more generally to music [135, 134].

Furthermore, work by Flexer demonstrates that general music similarity requires the context of

many di↵erent factors outside of just rhythm [136]. While it is possible to argue that certain

features may be capturing components of rhythm, the contextual complexities in the style labels

make it di�cult to infer meaning. This motivates the need for a more strict and concrete evaluation

of rhythm features and their contributions to specific rhythmic components. This component-level

analysis will be explained further in Chapter 7.

6.2 Designing Features for Rhythm

Each of the rhythm features described in Sections 6.2.3, 6.2.4, and 6.2.5 are derived using a combi-

nation of the accent signal, the tempogram, estimates of the tempo, and estimates of beat locations.

Section 6.2.1 will provide a brief overview each of these processes used.

6.2.1 Rhythm Signal Analysis

Accent Signal (ODF)

In order to capture aspects of each rhythm label, a set of rhythm-specific features was implemented.

The features are based on an accent signal, which measures the change of a music audio signal over

time. High points of change denote the presence of a new musical event. The accent signal used

is a variant of the SuperFlux algorithm [21] and is the half-wave rectified (H(X) = X+�X �
2 ) sum of

frequency bands of a frequency smoothed (Eq. 6.1) Constant Q Filter Bank Transform (CQT) Xcqt

of an audio signal (Eq. 6.2).

Xmax
cqt [n,m] =max(Xcqt[n,m − 1 ∶m + 1]) (6.1)

SF [n] = m=M�
m=1 H(Xcqt[n,m] −Xmax

cqt [n − µ,m]) (6.2)
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Tempo Estimation

From the accent signal, an estimate of tempo is found. This was achieved through a hybrid of

the standard inter-onset-interval (IOI) and autocorrelation function (ACF) methods that are widely

used. The IOI method employs SuperFlux onset detection to create a histogram of inter-onset-

distances. The ACF method is the autocorrelation of the accent signal. Periodicity salience is then

found by summing across k harmonics and sub-harmonics of the ACF lag or the IOI Histogram

distance (Eq. 6.3). A tempo is estimated using the maximum peak in the fusion tempogram.

SACF[l] = K�
k=1

ACF[kl] + K�
k=2

ACF[1
k

l] (6.3)

Periodicity salience is then converted to a tempogram by transforming the onset distance or lag l in

time to a tempo ⌧ = 60
l bpm. A fusion tempogram FTG(⌧)can be found by multiplying the individual

tempograms (Eq. 6.4) [53].

FTG(⌧) = SACF(⌧)⊙ SIOI(⌧) (6.4)

An evaluation using a small test set is shown in Table 6.1. I compare my method with two other

widely available methods from libRosa and the Echo Nest API. The first metric determines the

accuracy of the initial tempo estimate (±4% of the annotated tempo). The second metric allowed

for the algorithms to supply two estimates. The first of the two estimates is the initial peak from

FTG. The second is the maximum peak at relevant multiples of the first ( 1
3×, 1

2×, 2×, 3×). The third

metric chooses 5 candidate estimates of 1
3×, 1

2×, 1×, 2×, 3× the initial tempo estimate to determine

accuracy. It is labeled as correct if any of these 5 estimates is within ±4% of the annotated tempo.

Metric FTG (Eq. 6.4) Echo Nest API (Spotify) libROSA
1. Initial Guess 0.710 0.760 0.649
2. Two-Guesses 0.868 N/A N/A
3. Within Multiple 0.876 0.880 0.730

Table 6.1: Small-scale tempo estimator evaluation.

Many of the rhythm features and processes outlined in this chapter rely on an estimate of tempo.

These include beat tracking, the beat profile, and the tempogram ratio. For each of the following
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methods, I will treat the estimated tempo as ground truth. In Section 6.3 I will perform a deeper

evaluation of the e↵ects of errors in tempo estimates.

Beat Tracking

Using this accent signal and the tempo estimate, beat tracking is performed using the dynamic

programming method [33]. This method was chosen for its ease of implementation, scalability,

deterministic nature, and consistency of beat position estimation. To compare this method with

others, an evaluation of the beat tracking methods is performed using the SMC dataset [2]. The

top 5 methods, including those presented in work by Holzapfel [2], libRosa, the Echo Nest API,

and one presented in this thesis are shown in Table 6.2. The scores appear low but this dataset

was designed specifically to be di�cult to track [2] Across both metrics (AMLt, F-Measure), the

presented method performs just under the best performing one. It is also important to note that

some of the methods, such as the Böck method, are much more complex and use techniques such

as Neural Networks that take a lot of time to train. This limits their scalability when applied to

large datasets. The last column contains the average of both AMLt and F-measure, showing the

best performing algorithm overall.

Algorithm AMLt F-Measure Combined Rank (out of 19)
Klapuri 0.339 0.362 0.351 1
My Method 0.330 0.370 0.350 2
Degara 0.334 0.346 0.340 3
Böck 0.261 0.401 0.331 4
libROSA 0.299 0.361 0.330 5
... ... ... ... ...
Echo Nest (Spotify) 0.295 0.261 0.278 10

Table 6.2: Beat Tracking Evaluation

6.2.2 Rhythm Examples

In order to visualize each feature, a set of consistent style examples of Samba, Tango, and Jive

from the ballroom dataset will be used. A canonical representation of these rhythms for drum set,

obtained from Tommy Igoe’s Groove Essentials, is shown in Figure 6.1 [137]. Samba is 16th note

based with clave patterns present in the mid voices (snare drum). Tango is quarter-note based with

a tied 8th note pickup leading into each successive measure. Jive is a fast Rock and Roll pattern

Chapter 6: Rhythm Acoustic Features



82

with a driving swing. Triplets are notated to more accurately represent the swing expression. Each

feature explanation in the following sections will refer to these rhythmic examples.

Figure 6.1: These patterns define the Samba, Tango, and Jive rhythmic styles for drum set.

6.2.3 Beat Profile

The Beat Profile is Tatum-level feature that captures a compact snapshot of the accent signal within

beats. This is similar to the feature by Dixon [132], but it is simpler, deterministic, and free of human

intervention. The accent signal between consecutive beat estimates is quantized in time to 36 beat

subdivisions. The Beat Profile features are statistics of each of those 36 bins over all beats. The Beat

Profile Distribution feature (BPDIST) is comprised of the mean of each beat profile bin (BPMEAN)

and constrained such that that the collection of bins must sum to one. A set of BPMEAN features

is shown in Figure 6.2.
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Figure 6.2: Examples of the BPMEAN Feature are shown. On the X axis, 0.0 denotes the
beat, 0.5 denotes the 8th note, and 1.0 is the lead-in to the next beat.
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The Beat Profile clearly shows the Samba rhythm’s 16th note pulse. It also shows heavier

emphasis at 0.0, 0.5 and 0.75, corresponding to the beat and the 3rd/4th 16th note partials (counted

as 1 . & a). This emphasis appears because these partials occur more regularly, and are shared on

every beat of the Samba rhythm. The second 16th note partial at 0.25 (the ‘e’) only occurs some

of the time, resulting from clave-like rhythms, and therefore has less weight. The Tango profile

contains a strong down beat emphasis and a wide, low intensity 8th note. This is because Tango

has heavy, staccato beats and a slurred (elongated) up-beat (8th note) that only occurs once per

measure. Jive has a sharp, double-time triple feel with emphasis on the beats (0.0) and up-beats

(0.5). It also contains emphasis on the 3rd triplet partial of the 16th note triplet (0.33 and 0.83).

This is due to Jive’s fast swing and dance rhythms.

6.2.4 Tempogram Ratio

The Tempogram Ratio feature (TGR) uses the tempo estimate, similar to work by Peeters [53], to

remove the tempo dependence in the tempogram. By normalizing the tempo axis of the tempogram

by the tempo estimate, a fractional relationship to the tempo is gained. These fractional relationships

are shown in Figure 6.3.
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Figure 6.3: Note values and multiples of each dimension of the Tempogram Ratio feature.

A compact, tempo-invariant feature is created by capturing the weights of the tempogram at

musically related ratios relative to the tempo estimate. Examples of the tempogram and tempogram

ratio features are shown in Figure 6.4.
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Figure 6.4: Examples of the TGR feature.

Tempograms alone are di�cult to compare directly because each style has a di↵erent tempo,

creating additional time-scale di↵erences between examples. Looking at the TGR allows for more

direct comparison. This meter -level feature can show di↵erences in time-signature or other macro

rhythmic periodicities. Across all examples, there are similar periodicities across quarter-notes, half-

notes, and whole notes, suggesting stability within duple meter. However, taking a closer look at

Jive uncovers that triplet ratios are present suggesting the presence of a triplet feel (i.e., swing).

Looking closer at Samba shows that dotted note ratios are present, suggesting the hemiola rhythms

(straight 8ths grouped into threes) or clave patterns.

6.2.5 The Mellin Scale Transform

The Mellin Scale Transform is a scale invariant transform of a time domain signal. Similar musical

patterns at di↵erent tempos are scaled relative to the tempo. The Mellin Scale Transform is invariant

to that tempo scaling. It was first introduced in the context of rhythmic similarity by Holzapfel

[60], around which this implementation is based. Scale-invariance comes at the cost of signal shift-

invariance, so the normalized autocorrelation of the accent signal (Eq. 6.5) is used to remove

the e↵ect of phase. The formulation for the Mellin Scale Transform R(c) of discrete signals as a

function of scale parameter c with autocorrelation lag time interval Ts is shown in Equation 6.6.

The transform R(c) is calculated discretely relative to the lag time interval Ts and window length
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time Tup (Eq. 6.7).

r′(l) = r(l) −min{r}
max{r} −min{r} where, r(l) =�

n

x[n]x̄[n − l] (6.5)

R(c) = ∑∞k=1[r′(kTs − Ts) − r′(kTs)](kTs)1�2−jc

(1�2 − jc)√2⇡
(6.6)

�c = ⇡

ln Tup+Ts

Ts

(6.7)

The transform is calculated on autocorrelations of 8s widows with a 4s overlap. The song is summa-

rized by the mean over time. An example of the scale transform feature (MST) is shown in Figure 6.5.

In order to remove correlations of harmonics in the transform, the discrete cosine transform (DCT)

is computed. This is similar in motivation to MFCCs. Median removal (by subtracting the local

median) and half-wave rectifying the DCT creates a new feature that emphasizes periodicities by

performing a rough peak-picking and filtering. The energy component of the DCT is also removed

(0th component, similar to MFCCs). This new feature (MST DCT) is then normalized to sum to

one. More about the Mellin scale transform can be found in [60].
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Mellin Scale Transform Median Removed DCT

Normalized Frequency

Figure 6.5: Examples of the MST and MST DCT Feature.

The Mellin Scale Transform feature is slightly more complex to interpret. The goal of the

transform is to measure consistency of signals among multiple time scales. Another interpretation of
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the MST is the Fourier Transform of a time-domain signal that is sampled exponentially [60]. This

is explained further in Appendix A. Because it is computed on the autocorrelation of an accent signal

for this rhythm feature, it captures rhythmic repetition at di↵erent exponentially related time scales

(Tatum, beat, bar, phrase) in a more linearly harmonic manner. This can be seen as a time-domain

rhythm analog to the CQT creating linear mappings of logarithmic pitch relationships.

In Figure 6.5, Samba and Tango show similar transforms because they are similarly rhythmically

stable on multiple time scales. They each have a consistent Tatum pulse, beat pulse, and meter

pulse. There are consistent 16th notes for Samba, consistent quarter notes for Tango, and consistent

bar repetitions for both. The transform for Jive is slightly di↵erent. This is due to inconsistent

repetitions on the Tatum-level and beat-level from the swing pattern, creating a more complex

harmonic structure in the transform. More information and examples of this transform can be

found in Appendix A.

6.2.6 Multi-band Representations

Each of the rhythm features described in sections 6.2.3 and 6.2.4 rely on a global estimates of beats,

tempo and an accent signal. These features can be extended to multiple-band versions by using

accent signals that are constrained to be within a set of specific sub-bands of the CQT from which

it is computed. Using separate accent signals, the rhythmic features can relate to the di↵erent

compositional functions of instruments that occupy di↵erent frequency ranges. In this work, the

following ranges were used:

1. Bass Frequency Band: (A0,A3]→ (27.5Hz,220Hz]
2. Treble Frequency Band: (A3,A6]→ (220Hz,1.76kHz]
3. High Frequency Band: (A6,A9]→ (1.76kHz,14.08kHz]

6.2.7 Rhythmic Feature Evaluation

In order to evaluate and compare the new features, a set of general Music-IR classification tasks

was performed on the Ballroom Dataset (from Chapter 3: 8 ballroom dance styles, 698 instances,

523 instances with duple meter and 175 instances with triple meter). The rhythm features were
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used individually and in various aggregations with each feature dimension normalized from 0 to 1.

Block-based Mel-Frequency Cepstral Coe�cients (MFCC) are also used for comparison. Means and

covariances of MFCCs are calculated across overlapping 6-second blocks. These block-covariances

are further summarized over the piece by calculating their means and variances [138]. A simple

logistic regression classifier was fit for 10 trials with a randomly shu✏ed 70:30 train:test split for

each trial. A subset of these results is shown in Table 6.3. The tempogram (TG) feature shows state

Tempo-Invariant Feature Dim. Duple vs. Triple Ballroom Style
BPDIST 36 0.849 ± 0.031 0.776 ± 0.035
BPDIST M (multiband) 108 0.873 ± 0.016 0.794 ± 0.019
TGR 13 0.883 ± 0.024 0.747 ± 0.030
TGR M (multiband) 39 0.952 ± 0.007 0.817 ± 0.022
MST 230 0.956 ± 0.011 0.868 ± 0.010
MST DCT 230 0.936 ± 0.014 0.829 ± 0.018
MST BPDIST M TGR M 377 0.974 ± 0.010 0.917 ± 0.018
MST DCT BPDIST M TGR M 377 0.959 ± 0.015 0.884 ± 0.019
MFCC 460 0.877 ± 0.016 0.511 ± 0.027
MFCC MST BPDIST M TGR M 837 0.942 ± 0.018 0.743 ± 0.020
MFCC MST DCT BPDIST M TGR M 837 0.925 ± 0.017 0.707 ± 0.035
TG (tempo-variant) 500 0.962 ± 0.010 0.843 ± 0.011

Table 6.3: Ballroom dance style classification tasks results.

of the art performance on the Ballroom Dataset (as of 2014), which is evidence for the well-known

class tempo-dependence [134]. Other features that are tempo-invariant perform similarly without

exploiting the known class tempo-dependence of this dataset. Evidence of tempo-invariance vs.

tempo-variance in classification is shown by the confusion matrices in Figure 6.6.

The tempogram (TG) confuses Jive (160-180bpm) with Waltz (78-98bpm), even though they are

very di↵erent stylistically. However, it cannot easily di↵erentiate the exact 2:1 tempo ratio because

both styles have energy at similar tempo multiples. Rumba (90-110bpm) and Jive show a similar

error relationship. Conversely, MST confuses Samba (96-104bpm) with Tango (120-140bpm) and

ChaChaCha (116-128bpm), which do not overlap with Samba’s tempo range. However, these three

styles contain similarity in their rhythmic self-repetition, which is something the MST feature is

designed to capture. Furthermore, this lack of overlap makes Samba much easier to distinguish for

the tempogram feature. This suggests that the rhythm features are representing something about

the rhythmic characteristics, and not relying on tempo for discrimination.
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Figure 6.6: Ballroom Dataset confusion matrices of the Mellin Transform and Tempogram
features

6.3 Analysis of Rhythmic Attributes and Tempo Estimation

In this section, I perform a preliminary analysis of musical attribute prediction using the Ballroom

Dataset and the GTZAN Rhythm Dataset. Because many of the presented rhythm features rely

on estimates of tempo, I also outline the e↵ects of errors in that estimation on rhythmic attribute

prediction models.

The e↵ects of tempo are evaluated by computing the rhythm features using the ground truth

tempo (⌧gt), a uniformly randomized octave error ( 1
2×, 1×, 2×) of the ground truth tempo (⌧✏), and

the estimated tempo (⌧est) from Section 6.2.1. Table 6.4 shows the results of evaluating each of these

tempo parameterizations compared to the ground truth tempos on the Ballroom Dataset and the

GTZAN Rhythm Dataset (Genre). Accuracy ‘A’ refers to ±4% of GT. Accuracy ‘B’ refers to ±4%

of 1
2×, 1×, or 2× of GT. These are similar to Accuracies 1 and 3 from Section 6.2.1 respectively.

Ballroom Genre
Metric GT Tempo GT + Error Estimated GT Tempo GT + Error Estimated
Accuracy A 1.000 0.307 0.623 1.000 0.319 0.647
Accuracy B 1.000 1.000 0.924 1.000 1.000 0.913

Table 6.4: Tempo estimation results on the Ballroom and GTZAN Rhythm (Genre) Datasets.
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With an understanding of how well tempo is being described within the rhythm feature computa-

tion, a set of attribute prediction experiments is performed using style, genre, meter, and feel labels

from the Ballroom Dataset and GTZAN Rhythm Dataset. The first set of experiments predicts the

class of an attribute (style, genre, meter) in a multi-class discrimination problem. This acts as an

analog to prior work using this data. A second set of experiments breaks up each of rhythm attribute

classes and performs an independent binary discrimination, which is similar to work in Chapter 7.

Each model employs Logistic Regression trained on a randomly shu✏ed 70%:30% split across 10 tri-

als with no artists shared between training and testing. The results in Tables 6.5, 6.6, and 6.7 show

the mean accuracies across the 10 trials. The features used in these experiments is the aggregation

of the Mellin Scale Transform DCT, the multi-band Beat Profile, and the multi-band Tempogram

Ratio features. These were chosen to evaluate the same aggregation used for the attribute and genre

models in Chapters 7 and 8.

The results in Table 6.5 show the e↵ects of tempo estimation on meter and style classification

on the Ballroom Dataset. Overall, tempo estimation errors have little e↵ect on classifying the meter

and style. This relatively low drop in error is partially due to the use of tempo-agnostic features

(Mellin Scale Transform) in combination with the estimation-based tempo-invariant ones. In the

8-class discrimination problem, the model using the estimated tempo drops 0.023 compared to the

one that uses the ground-truth tempo in feature computation. When classifying the meter, the drop

of 0.002 is negligible. When forcing an octave tempo error, the decrease in performance compared

to the ground-truth model is slightly more. However, it is a proportionally small decrease when

considering that this model only estimates the correct tempo ∼30% of the time.

Classification GT Tempo GT + Error Estimated Estimated Di↵. Error Di↵.
Attributes (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
Dance Style (Mean Acc.) 0.939 0.885 0.915 -0.023 -0.053
Triple Meter (Mean AUC) 0.993 0.976 0.991 -0.002 -0.018

Table 6.5: Meter and style classification on the Ballroom Dataset.

In order to further evaluate the e↵ects of tempo, meter and genre classification was performed

on the GTZAN Rhythm Dataset. The mean accuracy across all trials of multi-class classification of

meter and genre is shown in Table 6.6. Once again, incorrect estimation of tempo produces negligible
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decreases. The largest drop occurs when forcing errors into the model. Genre classification drops

∼10%. This may be due to the context of the errors made. In some genres such as country, cut-time is

common, meaning there is a di↵erent feeling of beat or pulse relative to the written tempo. If errors

are made consistently in certain contexts, they are less detrimental then when applied artificially

without context.

Multi-class Attributes GT Tempo GT + Error Estimated Estimated Di↵. Error Di↵.
(Mean Acc.) (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
Meter (4-class) 0.890 0.872 0.882 -0.008 -0.017
Genre (10 class) 0.515 0.409 0.532 -0.017 -0.106

Table 6.6: Mean accuracy of meter and genre multi-class classification on the GTZAN Rhythm
Dataset.

Later work in Chapters 7 and 8 rely on the binary prediction of attributes independently. In

order to perform a similar evaluation, each of the meter and feel attributes from the GTZAN Rhythm

Dataset are separated into binary attribute prediction tasks. The results (AUC) of predicting the

presence of these attributes and the e↵ects of tempo error on the models is shown in Table 6.7.

In 4 out of 6 tasks, the estimated tempo produced less error than forcing octave errors. In these

four tasks, there was a drop of only ∼5%. While there is a greater drop due to the e↵ects of tempo

estimation for Triplet Feel and Compound Duple Meter, they are still performing well above random,

so information about each of the attributes is still captured in the features. This also provides some

evidence suggesting from where the error comes in the multi-class meter discrimination in Table 6.6.

Binary Attributes GT Tempo GT + Error Estimated Estimated Di↵. Error Di↵.
(Mean AUC) (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
Triple Meter 0.796 0.791 0.839 0.043 -0.005
Comp.-Duple Meter 0.917 0.925 0.729 -0.188 0.008
Mixed Meter 0.467 0.531 0.519 0.053 0.064
Duple Meter 0.824 0.725 0.760 -0.063 -0.099
Triplet Feel 0.921 0.848 0.808 -0.113 -0.073
Swing Feel 0.964 0.913 0.918 -0.046 -0.050

Table 6.7: Mean AUC of meter and feel attribute prediction on the GTZAN Rhythm Dataset.

A more in-depth analysis of attribute predictions using the Ballroom Dataset and GTZAN

Rhythm Dataset is found in Appendix D. The appendix also evaluates attribute prediction with

each rhythm feature individually and in various aggregations.
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Chapter 7: Learning Rhythmic Components

Previous work has studied the general recognition of rhythmic styles in music audio signals, but

few e↵orts have focused on the deconstruction and quantification of the foundational components of

global rhythmic structures. The work in this chapter focuses on modeling rhythm-related attributes

of meter and “feel” (e.g., “swing”) in music using the targeted acoustic features from Chapter 6.

Each of the models is evaluated using more than one million expertly-labeled audio examples from

the Pandora R○ Music Genome Project R○ (MGP).

Most of the previous work in capturing rhythm has relied on evaluation through the classification

of a generalized musical style or genre, while simultaneously focusing on specific aspects of rhythm

in the feature design. Rhythm tasks, as in Chapter 6, are sometimes evaluated on the Ballroom

Dataset [134], which more precisely represents rhythm than a dataset that is labeled with basic

genre. However, this remains a high-level approach void of targeted learning of specific rhythmic

constructs. As a result, researchers have started to overfit and exploit phenomena of the dataset

rather than capture the attributes that relate more generally to music [135, 134]. Furthermore,

work by Flexer demonstrates that general music similarity requires the context of many di↵erent

factors outside of just rhythm [136]. While it is possible to argue that certain features may be

capturing components of rhythm, the contextual complexities in the style labels make it di�cult to

infer meaning. This motivates the need for a more strict and concrete evaluation of rhythm features

and their contributions to specific rhythmic components.

7.1 Approach

In this section, I outline the set of approaches used to model rhythmic attributes from the Music

Genome Project.
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7.1.1 Rhythmic Attributes of the Music Genome Project

In this work, I seek to capture rhythmic attributes individually and automatically in music audio

signals. Using the rhythm descriptors outlined in Chapter 6, a set of machine-learning models is

trained to learn the presence of the meter and rhythmic feel components individually across more

than one million audio examples.

The targeted attributes are compositional constructs, such as the meter, or well-defined compo-

nents of the musical feel, such as the presence of swing. Namely I focus on the following 9 rhythmic

attributes:

• Meter: Cut-Time, Triple, Compound-Duple, Odd

• Tatum (micro) Feel: Swing, Shu✏e

• Meter (macro) Feel: Syncopation, Back-Beat Strength, Danceability

Previous work has looked at identifying musical meter. However, emphasis was placed on distin-

guishing duple versus triple in a more general sense rather than identifying the true meter, which

has an important function in the context of rhythmic style. Because focus is placed on meter di↵er-

entiation, cut-time, triple, compound-duple, and odd meters are targeted. The widely shared meter

of simple-duple ( 2
4 , 4

4 ) is ignored. Rhythmic feel has also been studied, but mostly in the context

of similarity. Individual components of the rhythmic feel are important in defining style. They are

easily recognizable to a listener, but are sometimes di�cult to quantify. In this work I seek to define

and capture the the qualities of swing, shu✏e, syncopation, back-beat strength, and danceability.

The rhythmic component labels were defined and collected by musical experts on a corpus of over

one million audio examples from the Pandora R○ Music Genome Project R○(MGP). The labels were

collected over a period of nearly 15 years and great care was placed in defining them and analyzing

each song with a consistent set of criteria. More information can be found in Chapter 3.
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7.1.2 Machine Learning Models

In order to learn the rhythmic attribute labels from audio features, a set scalable models was

employed. More information about each can be found in Chapter 4. They include linear models and

tree ensembles, namely:

Linear

• Logistic Regression (binary attributes)

• Linear Regression (continuous attributes)

Trees

• Gradient Boosted Trees (GBT)

• Random Forests (RF)

• Gradient Boosted Tree hybrid models (GBT-H)

• Random Forest hybrid models (RF-H)

7.2 Predicting Rhythmic Attributes: Linear Models

7.2.1 Experiments

In order to predict the rhythmic attributes from Section 7.1.1, stochastic gradient descent (SGD)

was formulated for classification of the binary labels (log loss, logistic regression) and regression

of continuous labels (least-squares loss, linear regression). The learning rate was tuned adaptively.

The training data was separated on a randomly shu✏ed 70:30 train:test split with no shared artists

between training and testing. Due to the size of the dataset, a single trial for each attribute is both

tractable and su�cient. More on SGD can be found in [139]. Cut-time, triple, compound-duple,

and odd meters along with the presence of swing, shu✏e, and heavy syncopation are all binary

attributes and are therefore formulated as classification tasks. Danceability and back-beat strength

are continuous ratings and are formulated as regression tasks.
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7.2.2 Results

The classification and regression results for each of the rhythm attributes are shown in Table 7.1. The

binary classification tasks are evaluated using the area under the receiver operating characteristic

curve (AUC). The regression results are evaluated with the R2 metric.

AUC Comp. R2 Back-
Features Cut Triple Duple Odd Swing Shuf. Sync. Dance Beat
BPDIST 0.792 0.753 0.733 0.698 0.845 0.875 0.724 0.317 0.136
BPDIST M (B) 0.864 0.807 0.772 0.756 0.871 0.886 0.745 0.412 0.301
TGR 0.645 0.759 0.804 0.728 0.795 0.840 0.658 0.317 0.136
TGR M (T) 0.801 0.808 0.859 0.754 0.811 0.842 0.666 0.350 0.199
MELLIN (S) 0.810 0.916 0.945 0.840 0.868 0.914 0.743 0.452 0.269
MELLIN D (D) 0.862 0.910 0.933 0.848 0.876 0.915 0.761 0.513 0.425
(S) (B) (T) 0.890 0.926 0.949 0.849 0.897 0.921 0.769 0.506 0.396
(D) (B) (T) 0.899 0.924 0.946 0.862 0.902 0.920 0.770 0.515 0.393
MFCC (M) 0.802 0.795 0.667 0.741 0.784 0.723 0.707 0.450 0.38
(M) (S) (B) (T) 0.899 0.920 0.942 0.843 0.897 0.922 0.780 0.537 0.464
(M) (D) (B) (T) 0.904 0.920 0.942 0.861 0.903 0.920 0.779 0.532 0.468

Table 7.1: The results for rhythm construct learning are shown. Both the AUC and R2 metrics
have a maximum value of 1.0 and lower bounds of 0.5 when predicting a random class (AUC)
and 0.0 when predicting the mean of the test labels (R2).

The results show that the rhythm-motivated features are best able to capture the rhythm at-

tributes when compared to the the timbre-motivated features. When both are used in combination,

little improvement is gained. Timbre features alone can di↵erentiate certain rhythmic attributes

fairly well in some cases. For example, the cut-time meter is very common in the “country” and

“bob jazz” genres and MFCC’s are possibly picking up on the genre’s similarly specific instrumenta-

tion rather than the rhythmic components. In all cases, the rhythm features are better than timbre

alone, o↵ering further proof that the rhythm features are learning something about the attributes

they are targeting rather than their generalized correlation to a musical style.

Furthermore, it is seen among rhythm features that each have selected strengths. They tend

to represent Tatum-level versus Meter-level information and single-band (global) versus multiple-

band (range-specific) information. When considering Tatum-level versus Meter-level patterns, swing,

shu✏e, and syncopation are better represented by the beat profile features than the tempogram ratio

features. This is because these rhythm attributes are defined on a local beat level, and the patterns

within the beats (Tatums) have a specifically associated feel. Compound-duple and odd meter are
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better defined by tempogram ratios, which suggests that they have patterns that cannot be captured

within a single beat. It is also seen that the Mellin representations are e↵ective across beat-level

and measure-level attributes, suggesting that they are able to capture both.

When looking at single-band versus multi-band features, the rhythm components and associated

features that capture interplay between multiple instrument ranges are highlighted. Meter, synco-

pation, danceability and back-beats all rely on the emphasis of specific points in a measure. In the

context of a performance, the use of multiple instruments may be used to highlight these di↵erences

in emphasis, which is captured in multi-band representations. Attributes that rely on global feel

and timing, such as a swing or shu✏e, are not aided by the multi-band representations.

7.3 Predicting Rhythmic Attributes: Tree Ensembles

7.3.1 Experiments

In this section, tree ensembles are used for attribute prediction. Each model is trained with a

rhythm feature vector, a timbre feature vector, and their combination. The rhythm feature vector

is a combination of the Median removed Mellin Scale Transform DCT, multi-band Beat Profiles,

and multi-band Tempogram Ratios. The timbre feature vector is a block based implementation of

MFCCs [140].

Tree ensembles were employed because they can more powerfully represent non-linear relation-

ships that may be present between the rhythm attributes and the acoustic features. Both Random

Forests (RF) [123] and Gradient Boosted Trees (GBT) [122] formulated for both classification of

binary attributes (e.g., meter) and regression of continuous attributes (e.g., danceability) are used.

Additionally, similar to work by He [127], tree ensembles can function as a feature transformation

and the output of each leaf can be used input features to a simpler classification or regression model

(RF-H, GBT-H). The output decisions of each tree in the ensemble can be used as a new feature set

that exploits the relationships of ensemble predictions. In this work, I use the leaf outputs of each

tree as inputs into linear classifiers (Logistic Regression) and regressors (Linear Regression) trained

using stochastic gradient descent (SGD). These models are discussed further in Chapter 4.
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For each method, a 70%:30% (train:test) split of the data was used, and no artists were shared

between the training and testing sets. For comparison, I will evaluate these methods against the

linear models presented in previous work (Section 7.2) [10]. When training each model, the following

tree parameters were tuned across generally accepted ranges: tree depth (3-8), number of estimators

(50-250), percentage of features used per estimator (12.5%-50%). Only the best models will be

discussed.

7.3.2 Results

The results for each of the experiments are shown in Table 7.2. Each model was trained using only

rhythm features, only timbre features, or their combination. It is seen across the board, and similar

to previous work [10], that the rhythm features perform better than timbre features when modeling

rhythmic attributes. The combination of rhythm and timbre performs only slightly better than when

using rhythm features alone. Each of the tree models outperform each of the linear models, suggesting

that the relationship of rhythm features to rhythm attributes are more complex than those captured

by linear models. When considering the tree ensemble models, the GBTs and GBT-Hs generally

outperform RFs and RF-Hs respectively. For GBTs, the hybrid approach (GBT-H) in this context

is not very helpful. However, for RFs, the RF-H approaches are helpful, especially for regression

of the continuous attributes (danceability, back-beat), with model performance approaching that of

the GBT and GBT-H models.
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AUC Comp. R2 Back-
Features Model Cut Triple Duple Odd Swing Shuf. Sync. Dance Beat

Linear 0.797 0.794 0.663 0.745 0.781 0.719 0.705 0.400 0.309
RF 0.842 0.811 0.702 0.791 0.830 0.758 0.738 0.515 0.340

Timbre GBT 0.877 0.808 0.689 0.769 0.828 0.761 0.737 0.570 0.401
RF-H 0.853 0.817 0.707 0.793 0.835 0.762 0.750 0.560 0.373
GBT-H 0.868 0.820 0.713 0.793 0.839 0.764 0.759 0.553 0.372
Linear 0.901 0.924 0.946 0.859 0.903 0.919 0.768 0.505 0.316
RF 0.926 0.938 0.960 0.870 0.916 0.926 0.779 0.554 0.364

Rhythm GBT 0.944 0.956 0.962 0.862 0.932 0.928 0.779 0.615 0.463
RF-H 0.930 0.943 0.960 0.875 0.922 0.927 0.787 0.602 0.444
GBT-H 0.939 0.951 0.961 0.886 0.925 0.928 0.786 0.603 0.449
Linear 0.905 0.920 0.943 0.865 0.903 0.919 0.777 0.486 0.441

Timbre RF 0.930 0.936 0.960 0.881 0.921 0.930 0.791 0.594 0.417
+ GBT 0.949 0.956 0.960 0.877 0.935 0.930 0.793 0.645 0.505

Rhythm RF-H 0.934 0.943 0.960 0.883 0.926 0.931 0.802 0.634 0.477
GBT-H 0.946 0.953 0.962 0.899 0.931 0.932 0.805 0.631 0.487

Table 7.2: The rhythmic attribute learning is evaluated with area under the ROC curve (AUC)
for classification and R2 for regression.

7.4 Conclusion

A set of large-scale experiments was performed to quantify and label a set of rhythmic meter and

feel attributes using the Pandora R○ Music Genome Project R○. From a musicology perspective, these

rhythmic attributes are important in the makeup of a musical style. From this work, we gain insight

into the meanings of rhythmic features as they relate to meter and feel when applying them to style

recognition tasks in the future. In later work, more complex, scalable models employing Random

Forests, Gradient Boosted Trees and stacked tree ensembles [127] were evaluated. Similar to neural-

network models, tree ensembles benefit from the ability to learn complex, non-linear mappings of the

data. It was found that the tree ensemble methods are better than linear methods when modeling

the complexities of rhythmic attributes. In most cases, Gradient Boosted Trees (GBT) perform best.

For GBTs, the addition of the hybrid approach (GBT-H) provides little gain. However, the hybrid

approach for Random Forests (RF-H), was helpful when modeling continuous attributes, which is

an intriguing result.
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Chapter 8: Learning Genre from Rhythmic Attributes

Just because genres are widely used does not necessarily mean that they are easy to categorize, or

easy to recognize. In fact, previous research shows that the music industry uses inconsistent genre

taxonomies [141], and there is debate over whether genre is the product of objective or subjective

categorizations [135]. Furthermore, it is debated whether individual musical properties (e.g. tempo,

rhythm, instrumentation), which are not always exclusive to a single genre, represent defining com-

ponents [142, 143]. For example, an Afro-Latin clave pattern occurs many places, both in Antonio

Carlos Jobim’s The Girl from Ipanema (Jazz) and in The Beatles’ And I Love Her (Rock). It can

even be heard in the popular song, All About that Bass, by Meghan Trainor. However, when dis-

criminating the more specific subgenres of ‘Bebop’ Jazz (fast swing) and ‘Brazilian’ Jazz (Afro-Latin

rhythms), this clave property becomes much more salient. Despite these intriguing relationships, a

large-scale analysis of the association of musical properties to genre has yet to be performed.

If it were possible to define a categorization of music genres that is useful, meaningful, consensual

and consistent at some level, then an automated categorization of music pieces into genres would be

both achievable and highly desirable. Since early research in Music Information Retrieval (MIR),

and still to date, the automatic genre recognition from music pieces has precisely been an important

topic [5, 143, 135]. In this chapter, the intriguing relationship of genre and musical attributes is

explored.

8.1 Approach

In this chapter I outline four approaches to modeling musical genre, investigating both expert human

annotations as well as audio representations (Figure 8.1). Attribute and genre relationships are

evaluated using subset of 12 ‘Basic’ musical genres (e.g. Jazz) as well as a selected subset of 47

subgenres (e.g. Bebop). In the first approach (1), I address via data-driven experiments whether

objective musical attributes of music pieces carry su�cient information to categorize their genre.
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The next set of approaches (2a, 2b, 2c) uses audio features to model genre automatically. In the

MODELING GENRE WITH THE MUSIC GENOME PROJECT: 
COMPARING HUMAN LABELED ATTRIBUTES AND AUDIO FEATURES 

Matthew Prockup, Andreas F. Ehmann, Fabien Gouyon, Erik M. Schmidt, Oscar Celma, and Youngmoo E. Kim 
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Fig. 1: Important attributes within the Jazz sub-genre are shown.
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Figure 8.1: An overview of the feature types used experiments performed.

second approach, audio features are used to categorize genre directly (2a). The third approach

(2b) uses audio features to model each of the musical attributes individually, similar to Chapter

7. Estimated activations of each of those attribute models are then used as features to model and

categorize genre. In the fourth approach (2c), the estimated attributes are used in conjunction with

raw audio features. By injecting human-inspired context, I hope to automatically capture elements

of genre in a manner similar to that of models derived from attributes labeled by music experts.

8.2 Data: The Music Genome Project

Both the musical attribute and genre labels used were defined and collected by musical experts on a

corpus of over one million music pieces from the Pandora R○ Music Genome Project R○ (MGP). The

labels were collected over a period of nearly 15 years and great care was placed in defining them and

analyzing each song with that consistent set of criteria.
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8.2.1 Musical Attributes

The musical attributes refer to specific musical components comprising elements of the vocals, in-

strumentation, sonority, and rhythm. They are designed to have a generalized meaning across all

genres (in western music) and map to specific and deterministic musical qualities. In this work, I

choose subset of 48 attributes (10 rhythm, 38 timbre). An overview of the attributes is shown in

Table 8.1.

Meter attributes denote musical meters separate from simple duple (e.g, cut-time,
compound-duple, odd)

Rhythmic Feel attributes denote rhythmic interpretation (e.g., swing, shu✏e, back-beat
strength) and elements of rhythmic perception (e.g., syncopation, danceability)

Vocal attributes denote the presence of vocals and timbral characteristics of voice (e.g.,
male, female, vocal grittiness).

Instrumentation attributes denote the presence of instruments (e.g., piano) and their
timbre (e.g., guitar distortion)

Sonority attributes describe production techniques (e.g., studio, live) and the overall
sound (e.g., acoustic, synthesized)

Table 8.1: Explanations of rhythm and orchestration attributes .

Each of the attributes is rated on continuous scale from 0-1. In some contexts, when developing

models for attribute prediction, it is helpful to convert them to binary labels if they show only

low (absence) or high (presence) ratings with little in between. More information on each of the

attributes can be found in Chapter 3.

8.2.2 Genre and Subgenre

In this work, evaluation is performed using a selected subset of 12 ‘Basic’ genres and 47 additional

sub-genres. ‘Basic’ genre is assembled as a mix of very expansive genres (e.g., Rock, Jazz) as well

as some more focused ones (e.g., Disco and Bluegrass), serving as an analog to many previous genre

experiments in MIR. The presence of a genre is notated independently for each song by a binary

label. A selection of genre labels and a simplistic high-level organization for discussion purposes is

shown in Table 8.2. More information on each of the genres can be found in Chapter 3.
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Basic Genre: Rock, Jazz, Rap, Latin, Disco, Bluegrass, etc.

Jazz Subgenre: Cool, Fusion, Hard Bop, Afro-Cuban, etc.

Rock Subgenre: Light, Hard, Punk, etc.

Rap Subgenre: Party, Old School, Hardcore, etc.

Dance Subgenre: Trance, House, etc.

World Subgenre: Cajun, North African, Indian, Celtic, etc.

Table 8.2: Some of the musical genres and subgenres used.

8.3 Musical Attribute Models of Genre

In order to see the extent to which genre can be modeled by musical attributes, a set of applied

musicology experiments is first performed. The set of expertly-labeled attributes from Section 8.2.1

is used to classify genre. A model for each individual genre is trained on each of the musical attributes

alone and in rhythm- and timbre-based aggregations. This will show the role that each attribute

or collection of attributes plays and how they interact with one another in order to create joint

representations of genre. Each model employs Logistic Regression trained using stochastic gradient

descent (SGD). The training data was separated on a randomly shu✏ed 70%:30% (train:test) split

with no shared artists between training and testing. Due to the size of the dataset, a single trial

for each attribute is both tractable and su�cient. The learning rate for each genre model is tuned

adaptively.

8.3.1 Evaluating the Role of Musical Attributes

In order to evaluate each of the models, the area under the receiver operating characteristic curve

(AUC) will be used. Each genre has large and varying class imbalance, so this is first corrected for

by weighting training examples by their inverse class count in the cost function. However, accuracy

alone still does not tell the whole story. High accuracy can be achieved by predicting only the

negative class (genre absence). Area under the ROC curve allows for a more comparable di↵erence

between each of the models than raw accuracy alone. It gives insight into the trade-o↵ between true

positive and false positive rates. Alternatively I could have used precision and recall (PR) curves for
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evaluation, but it is shown that if one model dominates in the ROC domain, it will also dominate

in the PR domain and vice-versa [144].

The results for each of the attribute-based genre models are shown in Tables 8.3 and 8.4. The

tables outline the AUC values for classifying genre using orchestration attributes, rhythm attributes,

and their combination. Table 8.3 summarizes all results, showing the mean of all AUC values for

each genre model contained in the subgroups defined in Section 8.2.2. Using attributes of rhythm

and orchestration together show better performance than using each alone. Secondly, orchestration

tends to perform better than rhythm. This suggests that the orchestration attributes in this context

are better descriptors. However in some cases, the rhythm attributes, even though there are less

of them (10 rhythm, 38 orchestration), are not that far behind. They are especially important in

defining Jazz and Rap, where rhythms such as swing in Jazz or syncopated vocal cadences over

back-beat heavy drums in Rap play defining roles.

Genre Group Orch. Rhythm Both
Basic 0.905 0.841 0.918
Rock Sub 0.910 0.819 0.919
Jazz Sub 0.925 0.856 0.945
Rap Sub 0.901 0.891 0.940
Dance Sub 0.961 0.881 0.965
World Sub 0.885 0.833 0.904
Mean 0.913 0.848 0.931

Table 8.3: An overview of all models using musical attributes.

In Table 8.4 I show the individual AUC results for the set of ‘Basic’ genres and subgenres of Jazz.

Within these individual groups, rhythm and orchestration attributes together are once again able to

better represent genre than when used individually. Each of the ‘Basic’ genres can be represented

reasonably well with just orchestration, as each has slightly di↵ering instrumentation. However, we

again see the importance of rhythm, describing what instrumentation and timbre cannot capture

alone. Genres heavily reliant on specific rhythms (e.g., Funk, Rap, Latin, Disco, Jazz) are all able

to be represented rather well with only rhythm attributes. In the Jazz subgenre this emphasis

on rhythm in certain cases is even more clear. In the next subsection, I will dive deeper into the

attributes that best describe the Jazz subgenres.
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Basic Jazz
Genre Orch. Rhythm Both Subgenre Orch. Rhythm Both
Rock 0.843 0.759 0.856 New Orleans 0.970 0.957 0.989
Blues 0.913 0.783 0.915 Boogie 0.943 0.893 0.978
Gospel 0.810 0.664 0.843 Swing 0.970 0.933 0.984
Soul 0.869 0.793 0.887 Bebop 0.976 0.965 0.988
Funk 0.937 0.862 0.937 Cool 0.964 0.928 0.975
Rap 0.926 0.890 0.951 Hard Bop 0.944 0.905 0.967
Folk 0.943 0.760 0.952 Fusion 0.843 0.750 0.886
Country 0.952 0.794 0.955 Free 0.906 0.855 0.936
Reggae 0.893 0.819 0.905 Afro-Cuban 0.961 0.910 0.972
Latin 0.940 0.904 0.945 Brazilian 0.871 0.847 0.905
Disco 0.899 0.891 0.902 Acid 0.886 0.660 0.891
Jazz 0.937 0.850 0.963 Smooth 0.862 0.667 0.871
Mean 0.905 0.814 0.918 Mean 0.925 0.856 0.945

Table 8.4: Experimental results for ‘Basic’ genre and Jazz subgenre models using musical
attributes.

8.3.2 The Influence of Rhythm and Orchestration in Jazz

In order to more deeply explore the defining relationships of rhythm and instrumentation within a

subgenre, we will look further into Jazz. Table 8.5 shows a subset of the important musical attributes

for the Jazz subgenres. The AUC accuracy of classifying each subgenre based on individual musical

attributes is shown.

Jazz Orch. Aux. Rhythm
Subgenre Solo Brass Piano Reeds Perc. BackBeat Dance Swing Shu✏e Syncop.
New Orleans 0.808 0.786 0.790 0.680 0.652 0.564 0.936* 0.513 0.515
Boogie 0.510 0.924* 0.544 0.714 0.592 0.712 0.737 0.505 0.676
Swing 0.721 0.784 0.748 0.679 0.624 0.578 0.923* 0.511 0.508
Bebop 0.725 0.850 0.862 0.703 0.662 0.525 0.946* 0.509 0.602
Cool 0.639 0.750 0.836 0.701 0.697 0.424 0.890* 0.504 0.568
HardBop 0.606 0.774 0.737 0.669 0.726 0.555 0.808* 0.684 0.606
Fusion 0.604 0.497 0.669 0.507 0.574 0.577 0.507 0.500 0.693*
Free 0.606 0.538 0.784 0.615 0.809* 0.765 0.577 0.515 0.558
Afro-Cuban 0.696 0.822 0.706 0.832* 0.782 0.648 0.512 0.501 0.790
Brazilian 0.560 0.736 0.568 0.572 0.761* 0.555 0.532 0.504 0.635
Acid 0.591 0.513 0.658* 0.507 0.585 0.622 0.509 0.515 0.635
Smooth 0.530 0.577 0.748* 0.590 0.559 0.614 0.513 0.509 0.573

Table 8.5: Attributes important to the Jazz subgenres are shown. AUC values greater than
0.70 are bold. The highest performing attribute for each genre is denoted with a *.

The presence of solo brass (e.g, trumpet), piano, reeds (e.g., saxophone) and auxiliary percussion

(e.g., congas) are important defining characteristics of instrumentation. Boogie and Afro-Cuban

styles, even though di↵erent, place heavy emphasis on the piano, which is shown here as well.
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Bebop, Hard-bob, and Afro-Cuban Jazz show emphasis placed on solo brass, piano, and reeds, as

they rely heavily on solo artists of these instruments (e.g., “Dizzy” Gillespie, Miles Davis, Thelonious

Monk, John Coltrane). The presence of auxiliary percussion is also a good descriptor of Afro-Cuban

Jazz, where the use of hand drums (e.g., bongos, congas) is very prevalent.

Rhythm is also important in Jazz subgenres. The danceability, back-beat, and presence of

swing and syncopation are defining characteristics of certain Jazz rhythms. It is important to note

that a high AUC does not necessarily denote the presence of that attribute, only its consistent

relationship. For example, back-beat is a good predictor of Free Jazz possibly due to its absolute

absence. Alternatively, one may think that the presence of swing is important in all Jazz. Bebop,

Hard Bop, New Orleans, and Swing Jazz do have a heavy dependence on swing being present.

However, Afro-Cuban Jazz relies on straight time, clave-based rhythms, so syncopation is a better

predictor. It is also important to note that while the attributes of swing and shu✏e are musically

related, there is a clear distinction in their application. In this case, swing is very important, while

shu✏e is only slightly useful (e.g., Boogie). However, outside of the Jazz genre, the opposite case

may be true, where shu✏e is the more important attribute (e.g. Blues, Country). This suggests

that it is important to make a clear distinction between swing and shu✏e.

8.4 Predicting Genre from Audio

There is a large body of work on musical genre recognition from audio signals [5, 135]. However,

most known prior work in this area focuses on discriminating a discrete set of basic genre labels with

little emphasis on what defines genre. In response, researchers have tried to develop datasets that

focus on style or subgenre labels (e.g., ballroom dance [145, 51, 53], latin [86], electronic dance [146],

Indian [147]) that have clear relations to the presence of specific musical attributes. However,

because models are designed for these specific sets, the methods used do not adapt to larger more

generalized music collections. For example, tempo alone is a good descriptor for the ballroom dance

style dataset, which is not true for more general collections [145].

Other work in genre recognition avoids the problem of strict genre class separations. Audio

feature similarity, self organizing maps, and nearest-neighbor approaches can be used estimate genre
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of an unknown example [84]. Similarly, auto-tagging approaches use audio features to learn the

presence of both musical attributes and genre tags curated by the public [99, 148] or by experts [101].

In this section, I compare modeling genre both with audio features directly and with stacked

approaches that exploit the relationships of audio features and musical attributes.

8.4.1 Timbre Related Features

In order to capture timbral components and model vocal, instrumentation, and sonority attributes,

block-based Mel-Frequency Cepstral Coe�cients (MFCC) are implemented. Means and covariances

of 20 MFCCs are calculated across non-overlapping 3-second blocks. These block-covariances are

further summarized over the piece by calculating their means and variances [138]. This yields a 460

dimensional timbre based feature set.

8.4.2 Rhythm Related Features

In order to capture aspects of each rhythm attribute, a set of rhythm-specific features was employed.

All rhythm features described in this section rely on global estimates of an accent signal [21]. The

beat profile quantizes the accent signal between consecutive beats to 36 subdivisions. The beat

profile features are statistics of those 36 bins over all beats. The feature relies on estimates of both

beats [33] and tempo. The tempogram ratio feature (TGR) uses the tempo estimate to remove the

tempo dependence in a tempogram. By normalizing the tempo axis of the tempogram by the tempo

estimate, a fractional relationship to the tempo is gained. A compact, tempo-invariant feature is

created by capturing the weights of the tempogram at musically related ratios relative to the tempo

estimate.The Mellin scale transform is a scale invariant transform of a time domain signal. Similar

musical patterns at di↵erent tempos are scaled relative to the tempo. The Mellin scale transform

is invariant to that tempo scaling. It was first introduced in the context of rhythmic similarity by

Holzapfel [60], around which our implementation is based. In order to exploit the natural periodicity

in the transform, the discrete cosine transform (DCT) is computed. Median removal (by subtracting

the local median) and half-wave rectifying the DCT creates a new feature that emphasizes transform

periodicities.
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The rhythm features are also extended to multiple-band versions by using accent signals that are

constrained to be within a set of specific sub-bands. This a↵ords the ability to capture the rhythmic

function of instruments in di↵erent frequency ranges. The rhythm feature set used in this work is an

aggregation of the median removed Mellin Transform DCT and multi-band representations of the

beat profile and the tempogram ratio features. This yields a 372 dimensional rhythm based feature

set that was shown in previous work to be relatively e↵ective at capturing musical attributes related

to rhythm (see Chapter 6 for more details).

8.4.3 Genre Recognition Experiments

In addition to the first experiment from Section 8.3, three additional methods for modeling genre are

presented, each based on audio signal analysis. The second method (2a in Figure 8.1) performs the

task of genre recognition with rhythm and timbre inspired audio features directly. The third method

(2b in Figure 8.1) is motivated similar to the first experiment, which employs the expertly-labeled

musical attributes. However, inspired by work in transfer learning [149], audio features are used to

develop models for the humanly-defined attributes which in turn are used to model genre. Through

this supervised pre-training of musical attributes, models of genre can be learned from attributes’

estimated presence. In the fourth approach (2c in Figure 8.1), inspired by Deng [150] and Knees [92],

the learned attributes are combined with the audio features directly in a shared middle layer to train

models of genre.

Similar to Section 8.3, genre is modeled with Logistic Regression fit using stochastic gradient

descent (SGD). The data was separated on the same 70%:30% (train:test) split. Once again, there

were no shared artists between training and testing. Due to the size of the dataset, a single trial

for each genre, as well as for each learned musical attribute, is both tractable and su�cient. The

learning rate for each model is tuned adaptively.

Using Audio Features Directly

Of the four presented approaches, the second uses audio features directly to model genre. The

features from Sections 8.4.1 and 8.4.2 are used in aggregation and a model is trained and tested for
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each individual genre. This provides a baseline for what audio features are able to capture without

any added context. However, this lack of context makes it hard to interpret what about genre they

are capturing.

Stacked Methods

The third and fourth approaches are also driven by audio features. However instead of targeting

genre directly, models are learned for each of the vocal, instrumentation, sonority, and rhythm

attributes. Inspired by approaches in transfer learning [149], and similar in structure to previous

methods in the MIR community [151], the learned attributes are then used to predict genre. This

approach is formulated similar to a basic neural network with a supervised pre-trained (and no

longer hidden) musical attributes layer.

The rhythm-based attributes are modeled with a feature aggregation of the Mellin Scale Trans-

form DCT, multi-band Beat Profile, and multi-band Tempogram Ratio features. The vocals, in-

strumentation, and sonority attributes are modeled with the block-based MFCC features. Each

attribute is modeled using logistic regression for binary labels (categorical) and linear regression for

continuous labels (scale-based). If an individual attribute is formulated as a binary classification

task (see Section 8.2.1), the probability of the positive class (its presence) is used as the feature

value.

The first version of the stacked methods (third approach) uses audio features to estimate musical

attributes and employs only those estimated attributes to model genre. The second version (fourth

approach) concatenates the audio features and the learned attributes in a shared middle layer to

model genre [150, 92].

8.4.4 Results

In this section, I will present an overview of all of the results from the audio-based methods, and

compare them to the models learned from the expertly-labeled attributes. In order to show the

overall performance of each method in a compact way, only combined rhythm and timbre approaches

will be compared initially. Once again each genre model will be evaluated using area under the ROC
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curve (AUC). In order to better evaluate the stacked models, I will finish with a brief evaluation of

the learned attributes.

Learning Genre

A summary of the results for the audio experiments using rhythm and timbre features is shown in

Table 8.6. The human attribute model results are also included for comparison. Similar to Table 8.3,

the mean AUC of each genre grouping is shown.

Genre Human Audio Learned Audio +
Group Attrib. Feat. Attrib. Learned
Basic 0.918 0.892 0.878 0.899
Rock Sub 0.919 0.902 0.903 0.911
Jazz Sub 0.945 0.910 0.893 0.923
Rap Sub 0.940 0.916 0.914 0.927
Dance Sub 0.965 0.963 0.955 0.966
World Sub 0.904 0.850 0.846 0.865
Mean 0.931 0.905 0.897 0.915

Table 8.6: An overview of experimental results using audio-based models that utilize both
timbre and rhythm features.

Compared to the human attributes approach, using audio features alone to model genre performs

relatively well. This is especially true for the ‘Basic’, Rock, and Dance groups, where the audio

feature AUC results are very close to human attribute performance. Across the other groups, the

di↵erences between the audio feature models and the musical attribute models suggest that the

audio features lose some important, genre-defining information. Furthermore, performance that was

close to musical attributes when using only audio features alone is also close when musical attributes

learned from audio features. This suggests that, in these cases, the audio features may be capturing

similarly salient components related to the musical attributes that describe these genre groups.

Overall, the learned attributes perform just as good as or worse than the audio features alone.

This suggests that they are at most as powerful as the audio features used to train them. However,

combining audio features and learned attributes shows significant improvement (paired t-test p < 0.01

across all genres) over using audio features or learned attributes alone. This evidence suggests

that audio features and learned attribute models each contain slightly di↵erent information. The

added human context of the learned attributes is helpful to achieve results that approach those of
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the expertly-labeled attributes. This also suggests that the decisions made from learned labels are

possibly more similar to the decisions made from human attribute labels, and the errors in estimating

the musical attributes are possibly to blame for the performance decrease when used alone.

Basic Human Audio Learned Audio + Jazz Human Audio Learned Audio +
Genre Attrib. Feat. Attrib. Learned Subgenre Attrib. Feat. Attrib. Learned
Rock 0.856 0.831 0.835 0.839 New Orleans 0.989 0.947 0.951 0.956
Blues 0.915 0.892 0.883 0.899 Boogie 0.978 0.962 0.939 0.962
Gospel 0.843 0.798 0.794 0.805 Swing 0.984 0.929 0.929 0.940
Soul 0.887 0.833 0.818 0.842 Bebop 0.988 0.951 0.943 0.957
Funk 0.937 0.911 0.886 0.918 Cool 0.975 0.900 0.901 0.916
Rap 0.951 0.963 0.951 0.969 HardBop 0.967 0.946 0.930 0.952
Folk 0.952 0.905 0.903 0.916 Fusion 0.886 0.844 0.812 0.867
Country 0.955 0.885 0.880 0.897 Free 0.936 0.920 0.923 0.931
Reggae 0.905 0.926 0.885 0.929 AfroCuban 0.972 0.934 0.912 0.946
Latin 0.945 0.921 0.905 0.923 Brazilian 0.905 0.879 0.858 0.904
Disco 0.902 0.936 0.893 0.938 Acid 0.891 0.841 0.763 0.846
Jazz 0.963 0.907 0.906 0.916 Smooth 0.871 0.868 0.853 0.894
Mean 0.918 0.892 0.878 0.899 Mean 0.945 0.910 0.893 0.923

Table 8.7: Experimental results for the ‘Basic’ genres and Jazz subgenres using audio-based
models.

The left half of Table 8.7 shows the results for predicting the ‘Basic’ genre labels. Within this

set, we see some interesting patterns start to emerge. In the case of Rap, Reggae, and Disco, audio

features are actually able to out-perform the musical attributes. This suggests that our small selected

subset of 48 human attribute labels do not always tell the complete story, and that the audio features,

which are much larger in dimensionality, possibly contain additional and/or di↵erent information.

As in previous results, the learned attribute models perform similarly to methods that use audio

features directly, but with a few exceptions. In the cases that the audio feature models do better

than the human-labeled musical attribute models, the learned attribute models are able to perform

at most as good as the human-labeled musical attribute models. This once again suggests that the

learned attribute approach may be better approximating the decisions the human-labeled attribute

approach is making. When adding audio and learned attributes together, the added context is once

again beneficial, with combined methods outperforming models that use audio or learned attributes

alone. Audio feature models that perform better than the human attributes models are additionally

improved, showing again that the audio features and human attribute labels contain complementary

information.
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The right half of Table 8.7 shows the results for predicting the Jazz subgenre labels. The Jazz

genre shows more expected relationships between the human attribute, audio feature, and learned

attribute methods. The combined method outperforms each of the audio feature and learned at-

tribute methods. The human attribute method performs better than almost all audio-based methods

(except Smooth).

Extended Genre Results

In this section, I present a series of extended results for genre classification that separates timbrel

and rhythm attributes for each model. The mean AUC for each of the genre and sub-genre groups

are shown in Table 8.8. The ‘human’ column of this table is identical to Table 8.3. In using the

hand-labeled musical attributes, the orchestration relationships to genre are more informative than

the rhythm relationships. When looking at the learned-attribute models, some rhythm relationships

become more important than orchestration ones, specifically for the Jazz and the World sub-genres.

This is possibly due to the ability to better represent rhythm attribute models than timbre attribute

models. This is further shown in using audio features directly. The rhythm features across the

board are better able to represent genre, showing that they are more powerful than the timbre audio

features. The rhythm audio features are also more powerful than the rhythm musical attributes

across the board. This also provides some evidence that the rhythm features are capturing some

information missed in vector of rhythmic attributes. These relationships are preserved when looking

deeper among ‘Basic’ genre and Jazz sub-genre. In Table 8.9 I show the results for classifying

‘Basic’ genre with features separated by timbrel and rhythm contexts. Table 8.10 shows results for

classifying Jazz sub-genre with features separated by timbrel and rhythm contexts.

Learning Attributes of Rhythm and Instrumentation

In order to further explore the stacked audio-based models, I performed a small evaluation of how

well the audio features are able to learn each of the expertly-labeled musical attributes. Sticking with

a common theme, I will explore the results of modeling attributes that are important to Jazz (from

Table 8.5). Table 8.11 shows the ability to directly predict these attributes from audio features. AUC
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Genre Group Human Audio Learned
Avg. AUC T R T+R T R T+R T R T+R
Basic 0.905 0.814 0.918 0.830 0.863 0.892 0.866 0.796 0.878
Rock Sub 0.910 0.819 0.919 0.863 0.875 0.902 0.900 0.833 0.903
Jazz Sub 0.925 0.856 0.945 0.850 0.899 0.910 0.829 0.846 0.893
Rap Sub 0.901 0.891 0.940 0.872 0.907 0.916 0.904 0.816 0.914
Dance Sub 0.961 0.881 0.965 0.933 0.947 0.963 0.950 0.898 0.955
World Sub 0.885 0.833 0.904 0.792 0.833 0.850 0.797 0.801 0.846
Mean 0.913 0.848 0.931 0.857 0.887 0.905 0.874 0.832 0.897

Table 8.8: An overview of all experimental results for timbrel (T) and rhythm (R) attributes
as well as their combination (T+R). Shown in each row is the mean of all genre classification
task within a given group.

Basic Genre Human Audio Learned
AUC T R T+R T R T+R T R T+R
Rock 0.843 0.759 0.856 0.809 0.793 0.831 0.834 0.763 0.835
Blues 0.913 0.783 0.915 0.816 0.876 0.892 0.880 0.828 0.883
Gospel 0.810 0.664 0.843 0.775 0.737 0.798 0.769 0.673 0.794
Soul 0.869 0.793 0.887 0.771 0.804 0.833 0.813 0.722 0.818
Funk 0.937 0.862 0.937 0.843 0.912 0.911 0.885 0.795 0.886
Rap 0.926 0.890 0.951 0.922 0.938 0.963 0.940 0.859 0.951
Folk 0.943 0.760 0.952 0.870 0.874 0.905 0.901 0.812 0.903
Country 0.952 0.794 0.955 0.798 0.869 0.885 0.879 0.838 0.880
Reggae 0.893 0.819 0.905 0.888 0.909 0.926 0.883 0.799 0.885
Latin 0.940 0.904 0.945 0.843 0.909 0.921 0.901 0.865 0.905
Disco 0.899 0.891 0.902 0.862 0.938 0.936 0.891 0.873 0.893
Jazz 0.937 0.850 0.963 0.851 0.888 0.907 0.898 0.842 0.906
Mean 0.905 0.814 0.918 0.837 0.871 0.892 0.873 0.806 0.878

Table 8.9: Classifying ‘Basic’ genre using timbrel (T) and rhythm (R) attributes as well as
their combination (T+R).

accuracies are reported for the binary attributes; R2 values are reported for continuous attributes.

The results of evaluating the model for the training and testing sets is shown.

First of all, we see that testing and training AUC is almost identical. Because of this, a single

trial (fold) is appropriate when learning attribute models. The learned models should generalize

over all music without over fitting. This justifies using the the same 70%:30% (train:test) split

for each layer in the stacked models. We see that MFCC’s do somewhat well for brass and reeds,

but the lower AUC overall shows that these timbre features are not doing enough to capture these

attributes, which may be a source of error in genre models that rely heavily on timbre. However,

the rhythm results are much better, especially for swing and shu✏e, which was argued in Section 8.3

and Table 8.5 as an important distinction to make when predicting Jazz subgenres.
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Jazz Subgenre Human Audio Learned
AUC T R T+R T R T+R T R T+R
NewOrleans 0.970 0.957 0.989 0.878 0.922 0.947 0.900 0.904 0.951
Boogie 0.943 0.893 0.978 0.912 0.908 0.962 0.876 0.889 0.939
Swing 0.970 0.933 0.984 0.849 0.926 0.929 0.875 0.903 0.929
Bebop 0.976 0.965 0.988 0.903 0.932 0.951 0.888 0.909 0.943
Cool 0.964 0.928 0.975 0.875 0.866 0.900 0.826 0.875 0.901
HardBop 0.944 0.905 0.967 0.900 0.930 0.946 0.888 0.884 0.930
Fusion 0.843 0.750 0.886 0.788 0.846 0.844 0.790 0.749 0.812
Free 0.906 0.855 0.936 0.846 0.922 0.920 0.850 0.910 0.923
AfroCuban 0.961 0.910 0.972 0.830 0.939 0.934 0.778 0.887 0.912
Brazilian 0.871 0.847 0.905 0.845 0.889 0.879 0.758 0.771 0.858
Acid 0.886 0.660 0.891 0.775 0.848 0.841 0.725 0.727 0.763
Smooth 0.862 0.667 0.871 0.804 0.864 0.868 0.795 0.746 0.853
Mean 0.925 0.856 0.945 0.850 0.899 0.910 0.829 0.846 0.893

Table 8.10: Classifying Jazz sub-genre using timbrel (T) and rhythm (R) attributes as well as
their combination (T+R).

Musical Audio Training Testing Label
Attributes Features AUC/R2 AUC/R2 Type
Solo Brass Timbre 0.796 0.798 binary
Piano Timbre 0.721 0.716 binary
Reeds Timbre 0.790 0.789 binary
Aux Percussion Timbre 0.750 0.750 binary
FeelSwing Rhythm 0.907 0.902 binary
FeelShu✏e Rhythm 0.919 0.920 binary
FeelSyncopation Rhythm 0.772 0.770 binary
FeelBackBeat Rhythm 0.400 0.393 continuous
FeelDance Rhythm 0.527 0.515 continuous

Table 8.11: The results for learning binary (AUC) and continuous (R2) attributes important
to Jazz are shown.

Table 8.12 shows a summary of learning the all of the selected 48 attributes from audio features.

It shows similar trends to Table 8.11, with rhythmic attributes better described by audio features

than timbral attributes. Furthermore, the continuous timbral attributes, which are sometimes com-

plicated perceptually (e.g., vocal grittiness), are not modeled very well at all. This suggests that

MFCC’s, and possibly other spectral approximations, do not provide the full picture into what we

perceive as the components of timbre. This is especially true in the context of instrument iden-

tification in mixtures, which is a main utility of the timbre features in this context. While these

models as a whole can be improved, the problems of instrument identification and timbrel analysis

are separate, large, and active research areas [152, 153, 154].
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Attribute Type Num Mean Median Maximum
Continous Rhythm (R2) 3 0.432 ± 0.077 0.393 0.515
Continous Timbre (R2) 12 0.266 ± 0.192 0.194 0.514
All Continuous 15 0.299 ± 0.186 0.389 0.515
Binary Rhythm (AUC) 7 0.889 ± 0.059 0.902 0.946
Binary Timbre (AUC) 26 0.794 ± 0.074 0.794 0.925
All Binary 15 0.814 ± 0.080 0.806 0.946

Table 8.12: Overall summary of learned attributes.

8.5 Conclusion

In this work, it was demonstrated that there is potential to demystify the constructs of musical

genre into distinct musicological components. The attributes selected from music experts are able

to provide a great deal of genre distinguishing information, but this is only an initial investigation

into these questions. I was also able to discover and outline the importance of certain attributes

in specific contexts. This strongly suggests that the expression of musical attributes are necessary

additions to definitions of genre.

It was also shown here (and in previous work in Section 7 [10]) that audio features motivated

by timbre and rhythm are, with some success, able to model musical attributes. Audio features are

also able to describe musical genre directly and through stacked approaches that exploit the learned

models of musical attributes. This is strong evidence suggesting that audio-based approaches are

learning the presence of the musical attributes, to some degree, when distinguishing genre. In some

cases, the audio-based models were more powerful than the human musical attribute models. This

suggests that there is more to genre than the chosen subset of rhythm and orchestration attributes.

This prompts that there is more about the definition of genre yet to be discovered.
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Chapter 9: Exploring Intuitive Feature Space Reductions for Rhythm

Rhythm is one of the most intuitive aspects of music with which humans can identify. People

can easily perform tasks like tapping along with the beat, or recognizing similarities/di↵erences in

style. However, it is sometimes di�cult to pinpoint which aspects of the music inform this intuition.

Creative and complex combinations of rhythmic attributes combine to create cohesive, distinct, and

easily recognizable styles. I attempt to bridge this gap and create representations that capture a

variety of rhythmic attributes in a joint and intuitively organized manner.

9.1 Motivation

There is a large body of work that has examined the general recognition of rhythmic styles in music

audio signals [145, 155], but few e↵orts have focused on the deconstruction and quantification of

the foundational components of global rhythmic structures and how they interact to form a musical

style. Previous work has shown that rhythmic components have very important relationships to

definitions of style and musical genre (Section 8 [156]). It was also shown in Section 7 that models

trained with compact features derived from the rhythmic accent signal are quite e↵ective when

representing rhythm-related attributes of meter and feel (e.g., swing) [10, 157]. However, prediction

of these attributes in isolation does not tell the full story. In this work, I try to demystify a high-level

measure of similarity by defining an organized and interpretable space that is able to jointly represent

multiple rhythmic attributes. Furthermore, motivated by work in transfer learning [149, 158], I will

show the salience of this joint representation in other domains as well (i.e., genre, language).

The approach is outlined as follows: In Section 9.2, a set of widely used dimensionality reduc-

tion techniques are employed to reduce high dimensional feature spaces to a set of fundamental

components. In Section 9.3, I outline methods to test the rhythm spaces’ ability to represent each

of the rhythmic attributes, their ability to regress examples through audio feature similarity, and
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their ability to generalize to other musical attributes (i.e, genre). Finally, in Section 9.4 I evaluate

a subset of hand selected rhythm space candidates with intuitively interesting projections.

9.2 Rhythm Space Reductions

In order to create a set of rhythm spaces, a selection of low-dimensional projections inspired by work

in other domains of Music-IR is performed. Used in music emotion recognition, the Arousal-Valence

(A-V) Space was developed from a set of discrete emotion tags projected into a two-dimensional

space [159, 160]. Other projections, such as the Tempo-Loudness space [9] and Kinetics-Energy space

[111], are derived directly from audio music signal analysis in order to more intuitively capture the

seemingly complex aspects of human performance expression. Spaces derived from human-tagged

attributes have the potential to follow a uniquely human organization, which may be helpful when

designing a human-interpretable space. However, they can only capture information humans have

already deemed important. Conversely, in designing a space from audio features, we may be able to

capture rhythmic interactions that humans cannot easily deconstruct (i.e. syncopation). Another

thing to consider is parametric vs. non-parametric reduction methods. Many classic techniques of

dimensionality reduction are parametric, and learn a set of components and corresponding activa-

tions with the objective of reconstructing the original feature space. Non-parametric reductions (i.e,

t-SNE) do not have this constraint and have been gaining traction in recent years for organizing and

visualizing high-dimensional data [119, 120].

In order to accommodate these trade-o↵s, I create candidate spaces derived from acoustic feature

representations of rhythm (Chapter 6 [10]) and from a collection of human-annotated rhythmic

attribute labels (Chapter 3). On each of these data source types, I perform both parametric and

non-parametric dimensionality reductions techniques.

9.2.1 Rhythm Attributes and Acoustic Features

The human-annotated rhythm attributes are compositional constructs such as meter and tempo

or elements of the rhythmic feel (e.g., swing). Namely I focus on the 10 rhythmic attributes

shown in Table 9.1 (top), which are labeled by music experts from the Pandora R○ Music Genome
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Project R○(MGP). All of the expert-tagged rhythmic attributes are rated with a continuous value

from 0 − 1.

In order to capture aspects rhythm in audio signals, a set of rhythm-inspired features was im-

plemented (Table 9.1, bottom). Each relies on global estimates of an accent signal [21]. The accent

signal is also be separated into multiple versions that are each constrained to specific frequency sub-

bands, allowing for rhythms with di↵erent compositional functions (e.g., bass, lead) to be captured

separately (see Chapter 6 for more details).

These human-annotated attribute values along with audio features are used to create the candi-

date rhythm reductions. These same rhythm attributes will also be used to evaluate the spaces in

the coming sections.

Meter attributes denote musical meter distinct from simple duple: cut-time meter,
compound-duple meter, triple meter, odd meter.

Swing denotes longer durations on the beat followed by a shorter duration. It usually
occurs on the 2nd and 4th beats.

Shu✏e is similar to swing, but warping is on every beat.

Syncopation is confusion created by early anticipation of the beat or obscuring meter
with emphasis against beats.

Back-Beat Strength is the emphasis placed on the 2nd and 4th beat or grouping in a
measure or set of measures.

Danceability is the utility of a song for dancing. There are consistent rhythmic groupings
with emphasis on beats.

Tempo is speed of the music pulse. In this work, it is scored on a relative scale similar to
the other attributes rather than representing a direct beats per minute (bpm) rating.

Beat Profile features are statistics of a quantized version of the accent signal between
consecutive beat estimates.

Tempogram Ratio features are tempo-invariant relationships of musical event timings
to an estimated tempo.

Mellin Transform Periodicity emphasizes periodicities in the Mellin Scale Transform
using the discrete cosine transform, median removal, and half-wave rectification [60].

Table 9.1: The human-annotated rhythmic attributes defined by the MGP (top) and the
rhythm audio features (bottom).

9.2.2 Learning a 2D space.

In order to learn low-dimensional rhythm space embeddings, I employ the widely used reduction

techniques of Principal Components Analysis (PCA), Independent Components Analysis (ICA),

Non-Negative Matrix Factorization (NMF) [130], and t-Distributed Stochastic Neighbor Embedding

(t-SNE ) [117]. The method was used to create a 2D space directly. PCA, ICA, and NMF were used
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to create a range of n-dimensional component/activation spaces (n = 2,3,6,9,12,15). A supervised

component selection using an Analysis of Variance (ANOVA) test with respect to the rhythm labels

was then performed to select two candidate dimensions for each reduction. The f-statistic was

computed for each of the component activations with respect to each rhythm label, and the two

dimensions were chosen that maximized the f-statistic (conditioned on significance p < .01) across all

rhythm labels. This component selection was done both for the expert-tagged attribute and acoustic

feature reductions. In order to maintain the same scale in each space, the dimensions of each were

normalized to be in the range [−0.5,0.5]. This process is outlined in Figure 9.1.

From those resulting reductions, a set of 5 spaces with potentially interesting characteristics was

qualitatively hand-selected for evaluation. Three are derived from acoustic features (AF) and two

are derived from the human-curated rhythm annotations (HA). Four were parametric (ICA,NMF),

and one was non-parametric (t-SNE). The selected reduction spaces were AF→ICA, AF→NMF,

AF→t-SNE, HA→ICA, and HA→NMF. The analysis of these spaces will be explained in Section 9.4.

1

2

3

4

6

5

Expert-tagged 
Attributes Audio Features

Unsupervised Feature Projections 
(PCA, ICA, NMF, tSNE)

Supervised Component Selection

Activation/Dimension Normalization

HA-ICA HA-NMF AF-NMFAF-ICA AF-tSNE

Rhythm Space Candidate Selection

Figure 9.1: Audio features and human annotations are reduced to a set of n components and
activations. The 2 most salient components are selected and their activations are normalized
to create a 2D space.
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9.3 Rhythm Space Evaluation

Based on previous work in visually informative feature spaces [159, 160, 9, 111], the following general

conditions must be satisfied:

1. Represent the high dimensional data in an intuitive and organized manner.

2. Generalize to new unseen examples.

3. O↵er useful information to other domains.

In order to evaluate each of these conditions, reductions will be trained using a subset of the

MGP consisting of 50k examples. Each example has expert-annotated attributes for rhythm (Table

9.1) as well as genre, sub-genre, and other geo-cultural factors (language). Because the candidate

spaces are both parametric (ICA, NMF) and non-parametric (t-SNE), a non-linear learning model

is desired to predict the attributes within the new spaces. For ease of implementation, a k-Nearest

Neighbors model will be used to both predict rhythm and genre attribute labels in the 2D candidate

spaces (conditions 1 and 3) and as well as perform regression in the audio feature domain to place

unseen examples into the 2D candidate space (condition 2). It was also shown in other work that

k-NN is quite e↵ective for rhythm related tasks, especially when using acoustic features that incor-

porate the Mellin Scale Transform [155]. For all experiments, the k value was swept in the range

[5,10,50,100,500,1000]. Through a set of tuning experiments, k = 500 was selected for experiments

regarding conditions 1 and 3, and k = 10 was selected for condition 2.

Due to a large class imbalance among some of the labels in the binary classification tasks, each

nearest neighbor was weighted relative to the inverse of its class size. Additionally, for all experiments

each neighbor was weighted by the inverse distance to the query example (closer neighbors are

weighted higher).

Each of the experiments is run for 5 trials using a randomized 70%:30% (train:test) split. In each

of the splits, no artists were shared between training and testing. The same 5 randomized splits

were constant across all experiments.
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9.3.1 Evaluating Rhythmic Salience

In order to satisfy the first condition, a set of labeling tasks was performed in the candidate projection

spaces to evaluate their salience with regards to each of the rhythmic attributes. A k -Nearest

Neighbors model was trained using the locations of each example in a projection space. An attribute

label of an unknown example was then predicted based on the labels of surrounding neighbors.

Because some of the rhythm attributes (meter, swing, shu✏e, and high syncopation) reduce to

representing the presence or absence of a label, they are binarized for simplicity of evaluation when

predicting them. Back-beat strength, dancability, and tempo remain continuous ratings.

9.3.2 New Example Prediction

To satisfy the second condition, an unseen example must be projected into the new space. Once again

I use k -Nearest Neighbors. This time, the goal is not to predict a rhythm label, but to evaluate the

organization of the space and its ability to generalize to new examples. For this task, a k-NN model

was trained in the the audio feature domain. A test example is then projected into each dimension

of the 2D rhythm candidate space based on its proximity to neighbors in the audio feature space.

Treating the candidate space as ground truth, evaluation is performed by computing the distances

of the regressed test points to their original locations in the 2D candidate space (euclidean distance).

9.3.3 Learning in Other Domains using Rhythm

To satisfy the third condition, I expand beyond rhythmic attributes and explore a selected subset of

12 ‘Basic’ genres, 12 additional Jazz sub-genres, and 14 language labels within the rhythm spaces.

‘Basic’ genre is assembled as a mix of very expansive genres (e.g., Rock, Jazz) as well as some more

focused ones (e.g., Disco and Bluegrass), serving as an analog to many previous genre experiments

in MIR. The presence of a genre is notated independently for each song by a binary label.

These transfer learning inspired experiments are set up similar to those in Section 9.3.1. The

k -Nearest Neighbors model was trained using the locations of each example in the projection space.

The label of a query example was then predicted based on the labels of surrounding neighbors. The

organization of genre in the rhythm space suggests that learning aspects about rhythm can transfer
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and be applied to learning genre. The e�cacy of each rhythm space at predicting genre further

supports work in [157] which argues that musical attributes are important when defining genre, and

rhythm plays an relevant role.

9.4 Results / Discussion

9.4.1 Exploring the Rhythm Spaces

In order to explore the meaning of these spaces, we can look deeper into the selected components for

each of the parametric reductions (ICA, NMF). For t-SNE, we can explore the space’s relationship

to the original feature domain through candidate points and their nearest neighbors. While t-SNE

is a non-parametric projection, it is designed to maintain local feature similarity in both the high

dimensional space and low dimensional projection. By visualizing the mean of t-SNE neighbors in

the context of the original feature space, we can gain an understanding of the projection’s local

structures which should be maintained in both projections [117]. In Figure 9.2 I show the selected

components for the parametric projections. In Figure 9.3, I show a set of query points in the t-SNE

space (notated with letters) and a two local neighbor means of those query points in the audio

feature space.

By viewing the components in Figures 9.2 and 9.3, we can infer a set of observations regarding

the meaning of the dimensions and spatial relationships in each candidate space. I will explore

each dimension through its ability to capture micro Tatum-level (pulse felt within beats) and macro

meter-level (broader) structures. HA-ICA captures di↵erences in groupings of 3. Triple Tatum-level

attributes (compound-duple/swing) are contained in activations of dimension 1 and triple meter-level

attributes are contained in activations of dimension 2. HA-NMF highlights di↵erences in danceable,

duple time in dimension 1 vs. triple and odd-time in dimension 2. AF-ICA highlights the presence of

additional Tatum information between the the beats and 8th notes in dimension 1 vs. the presence

of clearer triplet figures in dimension 2. AF-NMF very clearly places the activation of 8th and 16th

note figures against triplet figures. AF-tSNE is non-parametric, but similar to other reductions in

that it is able organize to distinct rhythmic structures. A 16th note pattern can be seen in the

neighbors of query point ‘H’ and triplet structures can be seen in the neighbors of query point ‘C’.
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Figure 9.2: Audio features (AF) and human annotations (HA) are reduced to a set of com-
ponents and activations. Shown here are the two selected components (supervised component
selection) for the ICA and NMF reductions.

9.4.2 Evaluating the Rhythm Spaces

In the first experiment (Section 9.3.1), I attempt to predict the presence of rhythmic attribute

labels through a k -Nearest Neighbors model trained using the candidate space projections. Binary

attributes (cut-time meter, triple meter, compound-duple meter, odd meter, high syncopation, swing,

and shu✏e) are evaluated using the area under the receiver operator characteristic curve (AUC).

Continuous attributes (tempo, back-beat, danceability) are evaluated with the R2 metric and the

mean absolute error (MAE). These results for each of the candidate spaces are shown in Figures 9.4

and 9.5.
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Figure 9.3: To visualize the audio feature information in the t-SNE space, a set of query
points (A,B,C, etc.) is selected. Local structures can be explored by looking at audio features
means of query point neighbors in the t-SNE space.

With respect to the the binary rhythm attributes, the HA-ICA space is best at representing

meter in music. It has the highest AUC in three out of the four meter attributes (cut-time, triple,

compound-duple, odd). Because each of the ICA components by design are assumed to be indepen-

dent, it is likely that this reduction targeted the naturally occurring independence of meter labels

(songs usually have a single meter). While the reductions learned from human annotations out-

perform the acoustic feature reductions in 6 out of the 7 binary classification tasks, the acoustic

feature reductions do capture distinguishing information. They perform well in tasks where distinct

Tatum-level information, which they have the power to represent, is necessary (compound-duple,

swing, shu✏e). Furthermore, in shu✏e classification, all acoustic feature reductions outperform the

human-tagged attribute reductions. For the continuous attributes, the reductions learned from hu-

man annotations once again outperform the acoustic feature reductions. Overall these di↵erences

are to be expected, as the human-derived attribute spaces are being evaluated on a slightly modified

version (some were binarized) of the attributes they were designed to capture. However, the audio

feature reductions, which are mostly unsupervised, are still informative representations.
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Figure 9.4: Mean AUC of predicting binary rhythm attributes across all trials.

9.4.3 Evaluating Space Regression

The second set of experiments is designed to test the ability of each rhythm space to generalize to

unseen examples. I evaluate this by treating the candidate rhythm space projections as ground truth,

performing regression on audio features using k -Nearest Neighbors to predict the spatial locations in

the rhythm candidate projections, and computing the error. In these experiments, k-NN was used

to project new, unseen examples into the rhythm space based on their proximity to examples in the

original feature space. I evaluate each space on how well each dimension was captured and predicted

through R2 and MAE. I also evaluate the models in both dimensions simultaneously with euclidean

distance MAE. Each space was normalized to be in the range [−0.5,0.5], so the error is equivalent

to distance and is directly comparable between the di↵erent space candidates.

In satisfying the regression condition, the audio feature reductions perform better. Because the

regression is performed in the audio feature domain, it is expected that the audio-feature reductions

are more easily learned. AF-ICA performs the best out of the audio feature reductions with a total
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Figure 9.5: Mean R2 and MAE of predicting continuous rhythm attributes across all trials.

Dim 1 Dim 2 Total
Space R2 MAE R2 MAE MAE
HA-ICA 0.538 0.079 0.251 0.063 0.113
HA-NMF 0.494 0.115 0.314 0.092 0.160
AF-ICA 0.932 0.024 0.848 0.039 0.050
AF-NMF 0.810 0.060 0.900 0.020 0.067
AF-tSNE 0.892 0.051 0.883 0.057 0.085

Table 9.2: Mean R2 and MAE of projecting into the new rhythm spaces (k = 10).

MAE of 0.05. This means that the regressed locations are, on average, accurate to within ±5% of

the space. The human-annotation derived candidate spaces, while having a higher error, are still

able to be regressed from audio features, showing that audio features are able to capture di↵erences

in that new reduced human-inspired label space.

9.4.4 Evaluating the Space in Other Domains

In the third and final set of experiments, I evaluate each space similar to Section 9.4.2. To discover

evidence of transfer learning, I evaluate the classification of “Basic” genre, “Jazz” sub-genre, and

geo-cultural factors (“language”). Predicting each genre and language label is a binary classification

task. These tasks are evaluated using AUC in Figure 9.6.

Once again, the reductions learned from human-annotated attributes performed the best when

discriminating most genre labels. However in a few cases, the audio-feature reductions are e↵ective

as well, sometimes outperforming the reductions from the human annotations. For example, rhythm

spaces derived from audio features are able to best discriminate both Blues and Reggae. While
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Figure 9.6: Experimental results for classifying “Basic” genre, Jazz subgenre, and geo-cultural
factors using spaces designed to represent rhythmic attributes.

seemingly di↵erent, the both contain the defining Tatum-level characteristic of shu✏e. But because

they are two di↵erent styles, it is possible they express it di↵erently. It was seen in Figure 9.2 that

audio feature reductions are able capture Tatum-level characteristics and seen in Figure 9.4 that

they are the best at discriminating shu✏e. This suggests that using spaces that capture Tatum-

level characteristics may informative when representing genre. Conversely, a single absence/presence

annotation for these characteristics is not designed to capture this di↵erence, and may be blind to

genre context in this case.
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Figure 9.7: A selection of rhythm and genre labels for the HA-ICA, AF-ICA, and AF-tSNE
spaces.

We can also perform a more qualitative evaluation of the rhythm spaces. In Figure 9.7, we

take a closer look at the HA-ICA, AF-ICA and AF-tSNE reductions. The first column shows a

collection of all meter labels organized jointly in each space along with a ‘none’ label, which can be

interpreted as simple-duple (defined in Table 9.1). From these meter plots, it becomes clear why

HA-ICA was the most successful at predicting meter attributes. While not as separable as HA-ICA,

similar meters do cluster in the AF-ICA and AF-tSNE spaces as well. In the second column, we

look at the examples where shu✏e is present, along with examples of Blues, Reggae, and ‘none’.

‘None’ in this context means, not Blues, not Reggae, and not shu✏e. In this set, HA-ICA is not able

to capture di↵erences in the styles, while AF-ICA and AF-tSNE are able to discriminate between

them to some degree. Because the audio features can also capture meter, this suggests the audio

features’ ability to capture similar attributes in di↵erent contexts. In the last column, we explore

danceability ratings for each example in the rhythm spaces. Comparing columns 2 and 3 for the
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audio feature reductions (AF-ICA and AF-tSNE),we can see that in areas where Reggae is present,

there are moderately high danceability ratings. Blues areas have lower danceability ratings. More

space reduction examples are found in Appendix B.

9.5 Conclusions

In this work, I showed the viability of a low-dimensional representation of rhythm in music. Across

each of the three criteria outlined in Section 9.3, the HA-ICA space performed best. This sug-

gests that a space generated from human-tagged attributes is best able to represent discriminative

di↵erences in not only rhythmic attributes but other attributes that humans find useful for music

categorization. The audio feature reductions are also viable spaces. While less accurate at direct

discrimination of attributes, they are easier to learn through regression, making them scalable and

potentially better at representing an unknown example in a more consistent manner. There is also

evidence that the audio reductions are better able to capture contextual di↵erences between at-

tributes (shu✏e in Blues vs. Reggae). I argue that a space that can represent these additional

contextual relationships is potentially more useful for musicology and music discovery/playlisting

than those that can only discriminate.

In later work, I explored more powerful methods, such as autoencoder networks, to learn reduc-

tions with objectives targeted more acutely to the rhythmic attributes. These methods and results

are shown in Appendix C.
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Chapter 10: Conclusions and Future Directions

In this thesis, I explored rhythmic components and their relationships to each other, to genre,

and other geo-cultural factors (i.e., language) through data driven approaches using audio signals.

Working in conjunction with Pandora R○, I employed a corpus of over 1 million expertly-labeled audio

examples across many rhythmic styles and genres from their flagship Music Genome Project R○. Each

song is labeled with more than 500 attributes of rhythm, instrumentation, timbre, and genre. This

supports the work’s scalability to very large datasets and its applicability to real-world problems.

First, a set of rhythm inspired features was developed. They were designed to capture elements

of rhythm at both the Tatum-level (micro) and meter-level (macro) time scales. A large-scale set of

experiments was then performed to quantify and label a set of rhythmic meter and feel attributes

using the Pandora R○ Music Genome Project R○. In later work, more complex, scalable models em-

ploying Random Forests, Gradient Boosted Trees, and hybrid tree ensembles were evaluated. Similar

to neural-network models, tree ensembles benefit from the ability to learn complex, non-linear map-

pings of the data. It was found that the tree ensemble methods are better than linear methods when

modeling the complexities of rhythmic attributes. From a musicology perspective, these rhythmic

attributes are important in the makeup of a musical style. From this work, insight is gained into

the meanings of rhythmic features as they relate to meter and feel when applying them to style

recognition tasks.

Second, it was demonstrated that there is potential to demystify the constructs of musical genre

into distinct musicological components. The attributes selected from music experts are able to

provide a great deal of genre distinguishing information. I was also able to discover and outline

the importance of certain attributes in specific contexts. This strongly suggests that the expression

of musical attributes are necessary additions to definitions of genre. It was also shown that audio

features motivated by timbre and rhythm are, with some success, able to model musical attributes.

Audio features are also able to describe musical genre directly and through stacked approaches that
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exploit the learned models of musical attributes. This is strong evidence suggesting that audio-based

approaches are learning the presence of the musical attributes, to some degree, when distinguishing

genre. In some cases, the audio-based models were more powerful than the human musical attribute

models. This suggests that there is more to genre than the chosen subset of rhythm and orchestration

attributes, and prompts that there is more about the definition of genre yet to be discovered.

In seeking to improve on this work, it may be necessary to investigate late fusion of context-

dependent classifiers (e.g., rhythm, timbre), which has shown improved results for genre classification

[136]. It may also be helpful to use a greater number of the available attributes than the chosen

48, as well as additional attribute types (e.g., melody, harmony). Furthermore, perhaps the most

interesting direction is to treat each musical attribute model as a hidden layer in a neural network.

In these cases, the models that are trained to predict musicological attributes will serve as a form

of domain-specific pre-training. Using deep models allows for back-propagation across an additional

layer which connects our attributes to genres. This will potentially help to learn better models

of genre as well as adjust the models of musical attributes in order better capture their genre

relationships.

Finally, I showed the viability of a low-dimensional representation of rhythm in music. This work

suggested that spaces generated from human-tagged rhythm attributes are best able to represent dis-

criminative di↵erences in not only rhythmic attributes but other attributes that humans find useful

for music categorization. The audio feature reductions are also viable spaces. While less accurate at

direct discrimination of attributes, they are easier to learn through audio feature regression, making

them potentially better at representing an unknown example in a more consistent manner. There

is also evidence that the audio reductions are better able to capture contextual di↵erences between

attributes (i.e., shu✏e in Blues vs. Reggae). I argue that a space that can represent these additional

contextual relationships is potentially more useful for musicology and music discovery/playlisting

than those that can only discriminate.

In seeking to improve the feature spaces, more powerful methods, such as autoencoder networks,

can be used to learn reductions with objectives targeted more acutely to the rhythmic attributes.
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This was investigated briefly in Appendix C, but more work is beyond the scope of this thesis.

Furthermore, it may be interesting investigate creating a genre space using timbre, harmony, and

rhythm features along with genre labels, and explore other musicological relationships. Furthermore,

because the applicability of each of these spaces is human-focused, it may be necessary to create

evaluations of each of the spaces through a set of listening tests and human feedback.
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Appendix A: The Mellin Scale Transform

The Mellin Scale Transform is a scale invariant transform of a time domain signal. Similar musical

patterns at di↵erent tempos are scaled relative to the tempo. The Mellin Scale Transform is a scale

invariant (meaning tempo invariant) transform that captures periodicity at multiple metrical levels

simultaneously. It was introduced in the context of rhythmic similarity by Holzapfel [60]. It was

introduced in this thesis in Chapter 6.2.5. In that Chapter, the discrete form of its computation was

introduced. In this appendix, I will give a brief overview of its relation to the Fourier Transform.

The Fourier Transform is shown in Equation A.1. The Mellin Scale Transform is shown in Equation

A.2. Notice that they are both time domain signals multiplied by a time/frequency exponential. The

Mellin Scale Transform is the Fourier Transform of an exponentially sampled time-domain signal

scaled by and exponential time weighting window. In the Mellin Scale Transform, c takes the place

of !.

X(!) =F{x(t)} = � ∞
−∞ x(t)e−j!tdt (A.1)

R(c) =F{r(e⌧)e 1
2 ⌧} = � ∞

0
r(e⌧)e 1

2 ⌧e−jc⌧d⌧ (A.2)

In order to dive deeper, I will provide an overview of its computation in relation to a few music

examples. The computation first starts with the accent signal. As stated previously in Chapter

6.2.5, the Mellin Scale transform is not shift invariant so the autocorrelation r(⌧) of the accent

signal must be used for input. This autocorrelation is then exponentially sampled r(e⌧). This expo-

nential sampling warps rhythmic structures at di↵erent time scales from exponential relationships

to approximately linear relationships. This makes large lag periodicity more linearly related to short

lag periodicity. This process is shown in Figure A.1.
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Figure A.1: The accent signal, its autocorrelation, and exponential sampling.

The autocorrelation now is exponentially decreasing so we can emphasize long-scale periodicity

through an exponential weighting. This is shown in Figure A.2.
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Figure A.2: The exponential weighting.
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The Mellin Scale Transform is the Fourier Transform of this resulting signal from Figure A.2.

The Mellin Scale frequencies and harmonics are related to how short-time tatum-level patterns relate

to large-scale meter-level patterns. Harmonics in the transform can interpreted as the periodic

consistency of the “fractal-like” relationships of rhythmic patterns at di↵erent time scales (Tatums,

Beats, and Meter). The Mellin Scale Transform is shown in the first column of Figure A.3.

There is a general periodicity in the Mellin Transform, similar to harmonics in a standard Fourier

Transform. These periodic structures can be exploited to create a more sparse, cepstral-like version

using the Discrete Cosine Transform (DCT). We now see a set of sparse peaks in the DCT. In order

to remove the massive DC component in the Mellin Transform (0th scale coe�cient), we can also

perform a simple peak picking by local median removal and half-wave rectification. This process is

shown in the second and third columns of Figure A.3.
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Figure A.3: The Mellin Scale Transform, its DCT, and the normalized median-removed DCT
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Appendix B: Collection of Rhythm Space Reductions

This appendix contains a large number of visualizations of the rhythm spaces introduced in Chapter 9

similar to Figure 9.7. Each section outlines a reduction type, displays the associated space dimension

components, and shows a selection of rhythm label and genre label colorings in the space. The genre

and rhythm colorings are a selection of the ‘Basic’ Genres and all the rhythm labels from Chapter

3.3. Color mappings for the genre and rhythm labels are shown in Figure B.1.

Attribute Present

Attribute Absent

Continuous Attribute

10.50

Attribute Intensity

Binary Attributes

Figure B.1: Color mappings for attribute and genre plots.

In each of the plots, the space is normalized from -0.5 to 0.5 to have uniform area. Because

each of the parametric spaces is additive, The point (-0.5, -0.5) in the bottom left corner means

there is no emphasis on either component and the point (0.5, 0.5) in the upper right corner has the

maximum relative emphasis on both components.

The first two spaces are derived from human annotated attributes of rhythm. The last three are

derived from rhythm acoustic features. Four of the spaces (HA-ICA, HA-NMF, AF-ICA, AF-NMF)

are derived from parametric reductions with the two visual components found through supervised

component selection from Chapter 9.2.2. The last method (AF-tSNE) is derived from t-SNE per-

formed on acoustic features.
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B.1 Human-tagged Attributes and NMF: HA-NMF

First introduced in Chapter 4.4.1, Non-Negative Matrix Factorization (NMF) decomposes a matrix

V into two matrices W and H. V[n×m] ≈W[n×r] ×H[r×m], where n is the number of examples, m

is the number feature dimensions, and r is the number of basis components to be learned.

Figure B.2 shows the component bases from NMF and supervised component selection on human

rhythm attribute annotations. The spaces in Figures B.3 and B.4 show the rhythm and genre labels

based on the activations of each of the selected component dimensions.

A

C

Figure B.2: Components for NMF reductions derived from human annotations of rhythm.

Figure B.3: Rhythm attribute colorings for NMF reductions derived from human annotations
of rhythm.
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B.2 Human-tagged Attributes and ICA: HA-ICA

Independent Components Analysis (ICA) considers higher-order statistics more than the 1st and 2nd

moments (expectation, variance) to minimize mutual information of the output. ICA creates a set

of independent components of non-Gaussian signals or features. Each of the resulting dimensions do

not need to be orthogonal [129]. Figure B.5 shows the component bases from ICA and supervised

component selection on human rhythm attribute annotations. The spaces in Figures B.6 and B.7

show the rhythm and genre labels based on the activations of each of the selected component

dimensions.

A

B

Figure B.5: Components for ICA reductions derived from human annotations of rhythm.

Figure B.6: Rhythm attribute colorings for ICA reductions derived from human annotations
of rhythm.
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B.3 Rhythm Audio Features and NMF: AF-NMF

First introduced in Chapter 4.4.1, Non-Negative Matrix Factorization (NMF) decomposes a matrix

V into two matrices W and H. V[n×m] ≈W[n×r] ×H[r×m], where n is the number of examples, m

is the number feature dimensions, and r is the number of basis components to be learned.

Figure B.8 shows the component bases from NMF and supervised component selection on acoustic

features. The spaces in Figures B.9 and B.10 show the rhythm and genre labels based on the

activations of each of the selected component dimensions.

 Mellin Scale Transform DCT MED                Beat Profile                             Tempogram Ratio

F

H

Figure B.8: Components for NMF reductions derived from rhythm acoustic features.

Figure B.9: Rhythm attribute colorings for NMF reductions derived from rhythm acoustic
features.
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B.4 Rhythm Audio Features and ICA: AF-ICA

Independent Components Analysis (ICA) considers higher-order statistics more than the 1st and 2nd

moments (expectation, variance) to minimize mutual information of the output. ICA creates a set

of independent components of non-Gaussian signals or features. Each of the resulting dimensions do

not need to be orthogonal [129]. Figure B.11 shows the component bases from ICA and supervised

component selection on acoustic features. The spaces in Figures B.12 and B.13 show the rhythm

and genre labels based on the activations of each of the selected component dimensions.

 Mellin Scale Transform DCT MED              Beat Profile                            Tempogram Ratio

B

C

Figure B.11: Components for ICA reductions derived from rhythm acoustic features.

Figure B.12: Rhythm attribute colorings for ICA reductions derived from rhythm acoustic
features.
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B.5 Rhythm Audio Features and t-SNE: AF-tSNE

Similar to methods suggested so far, t-Distributed Stochastic Neighbor Embedding (t-SNE ) attempts

to build a map in which high-dimensional relationships are maintained in a lower-dimensional space.

It aims to preserve local pairwise relationships, and focus less on large global relationships. This

space is explored in relation to the candidate point selection method described in Chapter 4.4.2.

Unlike ICA or NMF, the resulting space from t-SNE is non-parametric, meaning it is di�cult to

interpret what the dimensions mean in terms of the original feature space. The only assumptions

that can be made are that points close to each other in the t-SNE space are mapped as such because

they were close in the original feature space. In PCA or NMF, it was easy to see how each of the

basis components relate to the original features. Through the activations, it is possible to intuit

an understanding of the space as it relates to an expression of a component. This is not true of

t-SNE. In order to explore the t-SNE space, a clustering inspired method is employed to find a

set of candidate points. Figure B.14 shows the space and candidate points. Local means of those

candidate points are shown in Figure B.15. The spaces in Figures B.16 and B.17 show the rhythm

and genre labels based in the t-SNE space.

Figure B.14: Local component locations for t-SNE reductions derived from rhythm acoustic
features.
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Appendix C: Visualizing Rhythm Attributes in Music Using Stacked
Denoising Autoencoders

Di↵erent attributes of rhythmic meter and feel combine in complex and creative ways to create cohe-

sive, distinct, and easily recognizable styles. In this work, I attempt to not only learn organizations of

these compositional attributes, but understand their overarching relationships by creating a set of vi-

sualizations using stacked denoising autoencoders. The scope of Pandora’s Music Genome Project is

leveraged to create a set of visual projections from human-annotated attributes and rhythm-inspired

audio features.

C.1 Introduction

In this work, I explore representations that capture a variety of rhythmic attributes in a joint and

intuitively organized manner using stacked denoising autoencoders. This is the direct extension of

previous work in Chapter 9 and Appendix B.

There is a large body of work that has examined the general recognition of rhythmic styles in

music audio signals [52, 155], but few e↵orts have focused on the deconstruction and quantification of

the foundational components of global rhythmic structures and how they interact to form a musical

style. Previous work has shown that rhythmic components have very important relationships to

definitions of style and musical genre [156] and models trained with compact features derived from

the audio signal are quite e↵ective when representing rhythm-related attributes of meter and feel

(e.g., ‘swing’) [10, 157]. However, I believe that prediction of these attributes in isolation does not

tell the full story. In this work I try to demystify a high-level measure of similarity by defining

an organized and interpretable space that is able to jointly represent multiple rhythmic attributes.

Furthermore, motivated by work in transfer learning [149, 158], the salience of this representation is

explored in other domains as well (i.e., genre).
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C.2 Stacked Denoising Autoencoders

An autoencoder is a neural network trained to learn a low-dimensional coding that captures dis-

tinguishing information about the original feature space [161]. They can also be used to learn a

higher-dimensional coding (contractive) to de-tangle complex data relationships [162]. In both cases,

they are trained to accurately reconstruct the model input using the learned code. A denoising au-

toencoder adds noise or corruption to the original feature input during training to capture a more

coherent structure in the hidden layers. In order to learn more complex non-linear relationships,

deep networks can be created by stacking autoencoders, creating a stacked denoising autoencoder

[163].

N dims

N dims

2 dims

N dims

N dims

2N dims

2N dims

2 dims

N dims

N dims

N/2 dims

N/2 dims

2 dims

N dims

N dims

2N dims

2N dims

2 dims

N/2 dims

N/2 dims

A) Single Layer 
Reduction

B) 2 Layer Stacked 
Reduction

C) 2 Layer Stacked 
Contractive Reduction

D) 3 Layer Stacked 
Contractive Reduction

Figure C.1: Overview of stacked autoencoder models. N is the dimensionality of feature input
(attributes:N=10, audio:N=372).

Autoencoders can be used as a visualization tool, as in this work (Figure C.1), by learning a

2-dimensional coding. Each structure is used to reduce both the hand-annotated attributes and the

rhythm acoustic features on 50k song examples. The first set of reductions uses a feature vector

of 10 hand-annotated rhythm attributes. These attributes are collected by music experts from the

Pandora R○ Music Genome Project R○(MGP). The second set of reductions use a rhythm-inspired

feature vector (372 dims) computed directly from the audio signal: Beat Profile, Tempogram Ratio,

Appendix C: Visualizing Rhythm Attributes in Music Using Stacked Denoising

Autoencoders
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Mellin Scale Transform [10]. The organization of the reduced space is quantitatively evaluated

through rhythm attribute prediction using k-Nearest Neighbors.

Blues vs. Reggae DanceabilityMeter
none cut-time triple comp-d odd none shuffle Blues Reggae 10.50

Blues vs. Reggae
none shuffle Blues Reggae

A) Single Layer 
 Reduction

B) 2 Layer 
 Reduction

C) 2 Layer 
 Contractive 
 Reduction

D) 3 Layer 
 Contractive 
 Reduction
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Figure C.2: Spaces with selected label colorings from each model learned from human-
annotated attributes (left) and audio features (right)

C.3 Spatial Organization

In Figure C.3, we take a closer look at each of the generated spaces. Each space is evaluated on its

ability to capture meaningful similarities and di↵erences among rhythmic attributes. The 1st and

2nd columns show reductions from human-tagged attributes. The 1st column displays a collection

of all meter labels organized jointly in each space along with a ‘none’ label (interpreted as simple-

duple). From these meter plots, it is clear that human-attribute driven spaces are able provide

a pretty substantial meter separation. In the 2nd and 3rd column, we explore examples where

shu✏e (a rhythmic feel attribute) is present along with examples of two genres that contain shu✏e

(Blues, Reggae) and a ‘none’ label (not Blues, Reggae, or shu✏e). In this set, the human attribute

reductions are not able to capture di↵erences in the styles, while the audio feature reductions are,

suggesting some understanding of genre context in the interpretation of shu✏e. Comparing columns
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3 and 4, areas where Reggae is present also have high danceability ratings while Blues areas have

lower danceability ratings, suggesting the capture of broader contexts.

C.4 Evaluation

The e�cacy of the reductions are evaluated quantitatively by predicting a set of rhythmic attribute

labels in the reduced space using k-Nearest Neighbors (Similar to Chapter 9). Table C.1 (left) shows

that the reductions learned from human-labeled attributes are powerful representations, capturing

much of the rhythmic information in the lower-dimensional embedding. Each of the reduction

types (A,B,C,D) perform similarly when reducing the human-annotated rhythm attributes, which,

as stated previously, may result from the low initial dimensionality of the attribute space (10-D).

The audio feature reductions, while not as e↵ective, still capture distinguishing rhythm information

in the reduced space (Table C.1, right). This shows the potential for use in scalable systems that

require e�cient rhythm representation.

Labels Human Audio
Bin. (AUC) 1L (A) 2L (B) 2L (C) 3L (D) 1L (A) 2L (B) 2L (C) 3L (D)
Cut-Time 0.994 0.995 0.995 0.995 0.671 0.710 0.662 0.698
Triple 0.995 0.997 0.995 0.992 0.735 0.736 0.746 0.736
C-D 0.986 0.978 0.981 0.976 0.707 0.714 0.716 0.718
Odd 0.944 0.911 0.926 0.919 0.688 0.707 0.660 0.672
Swing 0.993 0.994 0.993 0.992 0.731 0.783 0.760 0.753
Shu✏e 0.940 0.927 0.942 0.931 0.780 0.835 0.854 0.800
Syncop. 0.971 0.972 0.973 0.969 0.633 0.635 0.595 0.641

Cont. (R2) 1L (A) 2L (B) 2L (C) 3L (D) 1L (A) 2L (B) 2L (C) 3L (D)
Tempo 0.862 0.840 0.869 0.841 0.081 0.107 0.105 0.098
Backbeat 0.918 0.913 0.925 0.914 0.331 0.350 0.382 0.332
Danceable 0.909 0.895 0.918 0.906 0.382 0.401 0.418 0.388

Table C.1: The rhythmic attribute predictions in the reduced spaces.

Along with the quantitative evaluation in Table C.1, it is necessary to qualitatively explore

the intuition of these spaces as well. This was introduced previously in this section, but here

we will explore the meaning of the spatial organization. For simplicity, we’ll explore the single

layer (A) human attribute space and the 2-layer (B) acoustic feature space (Figure C.3). A few

obvious organizations appear when looking at the embeddings. In the human annotation trained

visualizations, meter clusters very clearly, swing is a distinguished feel, and Danceability and Tempo

have clear diagonal, perpendicular gradients. Similar types of organization appears in the audio
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Feel
none sync. swing shuffle

Relative Tempo
10.50

World Genre
Brazilian Caribbean N. African S. African

Indian Flamenco E. Europe

Figure C.3: Selected label colorings for embeddings learned from human-annotated attributes
(top) and audio features (bottom)

feature reductions. Meter evolves from odd/triple to duple along the top-L to lower-R diagonal,

swing and shu✏e are separate from syncopation, and danceability shows another clear diagonal

gradient. Interesting patterns emerge when genre is explored in these spaces as well. When looking

at “World Music”, both spaces pick up on the similarity of music in Africa to music in the Caribbean

and Brazil, suggesting the importance of African rhythmic influence on music in Latin America

(Afro-Latin music).

C.5 Conclusions

A set of rhythm spaces was generated from expert-annotated attributes as well as acoustic features

and consistent and intuitive embeddings of rhythmic attributes were present in both. These consis-

tent representations learned from acoustic features can be used to develop scalable automated tools

to explore co-occuring musical attributes and uncover relationships that are sometimes nebulous

(i.e., culture, influence). In another vein, a low-dimensional organization of rhythmic similarity that

embeds expert annotations can be employed for more e�cient automated playlist generation. It can

also be used for intuitive music organization, exploration, and discovery. In future work, through

listener feedback, one can evaluate the embeddings’ ability to capture the rhythmic information
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that listeners deem important. Furthermore, by incorporating genre, it may be possible to develop

a model of listeners’ rhythm preferences within the context of the styles they enjoy.
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Appendix D: Attribute Prediction and Tempo Estimation

Meter (4-class, Genre) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.818 0.808 0.785 -0.033 -0.009
BPDIST M (B) 0.806 0.797 0.783 -0.023 -0.009
TGR 0.854 0.896 0.834 -0.020 0.042
TGR M (T) 0.849 0.885 0.823 -0.026 0.035
MELLIN (S) 0.848 0.851 0.853 0.005 0.003
MELLIN DCT MED (D) 0.867 0.862 0.851 -0.016 -0.005
(S) (B) (T) 0.891 0.862 0.880 -0.011 -0.029
(D) (B) (T) 0.890 0.872 0.882 -0.008 -0.017
MFCC (M) 0.787 0.767 0.787 0.000 -0.019
(M) (S) (B) (T) 0.877 0.874 0.887 0.010 -0.003
(M) (D) (B) (T) 0.891 0.871 0.885 -0.006 -0.020

Table D.1: Meter classification of 4 genre meter classes from the GTZAN Rhythm Dataset

Genre (10-class, Genre) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.458 0.347 0.407 -0.051 -0.112
BPDIST M (B) 0.490 0.384 0.476 -0.013 -0.105
TGR 0.313 0.163 0.345 0.032 -0.150
TGR M (T) 0.389 0.174 0.391 0.002 -0.216
MELLIN (S) 0.434 0.417 0.407 -0.028 -0.017
MELLIN DCT MED (D) 0.364 0.358 0.364 0.000 -0.006
(S) (B) (T) 0.548 0.475 0.546 -0.002 -0.073
(D) (B) (T) 0.515 0.409 0.532 0.017 -0.106
MFCC (M) 0.654 0.670 0.666 0.011 0.016
(M) (S) (B) (T) 0.727 0.667 0.694 -0.032 -0.060
(M) (D) (B) (T) 0.713 0.657 0.693 -0.020 -0.056

Table D.2: Genre classification of 10 genre classes from the GTZAN Rhythm Dataset
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Triple Meter (Genre) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.776 0.695 0.789 0.013 -0.081
BPDIST M (B) 0.745 0.670 0.819 0.074 -0.075
TGR 0.745 0.550 0.685 -0.061 -0.195
TGR M (T) 0.692 0.686 0.669 -0.023 -0.006
MELLIN (S) 0.851 0.849 0.861 0.010 -0.002
MELLIN DCT MED (D) 0.769 0.770 0.766 -0.003 0.001
(S) (B) (T) 0.887 0.873 0.835 -0.051 -0.014
(D) (B) (T) 0.796 0.791 0.839 0.043 -0.005
MFCC (M) 0.813 0.797 0.830 0.017 -0.016
(M) (S) (B) (T) 0.850 0.841 0.881 0.031 -0.009
(M) (D) (B) (T) 0.848 0.863 0.877 0.029 0.014

Table D.3: Triple Meter classification on the GTZAN Rhythm Dataset

C-D Meter (Genre) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.953 0.912 0.707 -0.246 -0.041
BPDIST M (B) 0.933 0.842 0.618 -0.315 -0.090
TGR 0.953 0.769 0.675 -0.278 -0.184
TGR M (T) 0.936 0.719 0.551 -0.385 -0.218
MELLIN (S) 0.785 0.794 0.833 0.048 0.009
MELLIN DCT MED (D) 0.763 0.744 0.749 -0.014 -0.019
(S) (B) (T) 0.959 0.877 0.881 -0.077 -0.082
(D) (B) (T) 0.917 0.925 0.729 -0.188 0.008
MFCC (M) 0.612 0.608 0.567 -0.045 -0.004
(M) (S) (B) (T) 0.946 0.919 0.868 -0.079 -0.028
(M) (D) (B) (T) 0.912 0.919 0.772 -0.140 0.006

Table D.4: Compound-Duple Meter classification on the GTZAN Rhythm Dataset

Mixed Meter (Genre) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.691 0.719 0.754 0.063 0.028
BPDIST M (B) 0.571 0.699 0.643 0.072 0.127
TGR 0.703 0.561 0.615 -0.088 -0.142
TGR M (T) 0.505 0.486 0.445 -0.060 -0.019
MELLIN (S) 0.760 0.758 0.744 -0.016 -0.002
MELLIN DCT MED (D) 0.504 0.537 0.449 -0.055 0.033
(S) (B) (T) 0.681 0.719 0.702 0.021 0.038
(D) (B) (T) 0.467 0.531 0.519 0.053 0.064
MFCC (M) 0.655 0.632 0.661 0.006 -0.023
(M) (S) (B) (T) 0.734 0.767 0.772 0.038 0.033
(M) (D) (B) (T) 0.527 0.568 0.588 0.061 0.041

Table D.5: Mixed Meter classification on the GTZAN Rhythm Dataset
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Duple Meter (Genre) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.812 0.772 0.732 -0.079 -0.040
BPDIST M (B) 0.746 0.719 0.759 0.013 -0.027
TGR 0.765 0.669 0.724 -0.040 -0.095
TGR M (T) 0.769 0.666 0.703 -0.066 -0.103
MELLIN (S) 0.843 0.845 0.825 -0.018 0.002
MELLIN DCT MED (D) 0.639 0.677 0.683 0.044 0.038
(S) (B) (T) 0.810 0.781 0.823 0.013 -0.029
(D) (B) (T) 0.824 0.725 0.760 -0.063 -0.099
MFCC (M) 0.712 0.711 0.717 0.005 -0.001
(M) (S) (B) (T) 0.827 0.812 0.824 -0.002 -0.014
(M) (D) (B) (T) 0.778 0.737 0.764 -0.013 -0.041

Table D.6: Duple Meter classification on the GTZAN Rhythm Dataset

Triplet Feel (Genre) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.934 0.908 0.645 -0.289 -0.027
BPDIST M (B) 0.958 0.880 0.686 -0.272 -0.078
TGR 0.955 0.747 0.655 -0.301 -0.208
TGR M (T) 0.962 0.710 0.509 -0.452 -0.251
MELLIN (S) 0.845 0.836 0.851 0.006 -0.008
MELLIN DCT MED (D) 0.703 0.718 0.720 0.017 0.015
(S) (B) (T) 0.964 0.933 0.895 -0.069 -0.031
(D) (B) (T) 0.921 0.848 0.808 -0.113 -0.073
MFCC (M) 0.578 0.633 0.584 0.006 0.054
(M) (S) (B) (T) 0.935 0.910 0.863 -0.072 -0.025
(M) (D) (B) (T) 0.921 0.880 0.796 -0.125 -0.041

Table D.7: Triplet Feel classification on the GTZAN Rhythm Dataset

Swing Feel (Genre) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.971 0.899 0.889 -0.082 -0.072
BPDIST M (B) 0.950 0.884 0.850 -0.100 -0.066
TGR 0.971 0.725 0.853 -0.118 -0.246
TGR M (T) 0.971 0.719 0.858 -0.114 -0.252
MELLIN (S) 0.928 0.922 0.931 0.003 -0.006
MELLIN DCT MED (D) 0.859 0.848 0.856 -0.003 -0.011
(S) (B) (T) 0.971 0.931 0.935 -0.036 -0.040
(D) (B) (T) 0.964 0.913 0.918 -0.046 -0.050
MFCC (M) 0.658 0.648 0.647 -0.011 -0.010
(M) (S) (B) (T) 0.970 0.943 0.936 -0.034 -0.027
(M) (D) (B) (T) 0.962 0.937 0.930 -0.032 -0.026

Table D.8: Swing classification on the GTZAN Rhythm Dataset

Appendix D: Attribute Prediction and Tempo Estimation
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Style (Ballroom) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.769 0.551 0.743 -0.026 -0.218
BPDIST M (B) 0.739 0.518 0.723 -0.016 -0.221
TGR 0.838 0.557 0.748 -0.090 -0.281
TGR M (T) 0.869 0.566 0.806 -0.063 -0.303
MELLIN (S) 0.832 0.851 0.837 0.004 0.018
MELLIN DCT MED (D) 0.866 0.854 0.863 -0.003 -0.011
(S) (B) (T) 0.906 0.852 0.898 -0.008 -0.054
(D) (B) (T) 0.939 0.885 0.915 -0.023 -0.053
MFCC (M) 0.462 0.447 0.460 -0.002 -0.016
(M) (S) (B) (T) 0.924 0.867 0.914 -0.010 -0.056
(M) (D) (B) (T) 0.947 0.909 0.923 -0.024 -0.039

Table D.9: Style classification on the Ballroom Dataset

Triple Meter (Ballroom) GT Tempo GT + Error Estimated Estimated Di↵. GT Di↵.
Feature (⌧gt) (⌧✏) (⌧est) (⌧est − ⌧gt) (⌧✏ − ⌧gt)
BPDIST 0.946 0.878 0.931 -0.015 -0.068
BPDIST M (B) 0.919 0.837 0.920 0.001 -0.082
TGR 0.954 0.838 0.968 0.014 -0.116
TGR M (T) 0.982 0.868 0.965 -0.017 -0.114
MELLIN (S) 0.988 0.986 0.982 -0.006 -0.002
MELLIN DCT MED (D) 0.952 0.952 0.954 0.002 0.000
(S) (B) (T) 0.994 0.987 0.992 -0.002 -0.007
(D) (B) (T) 0.993 0.976 0.991 -0.002 -0.018
MFCC (M) 0.914 0.912 0.920 0.006 -0.001
(M) (S) (B) (T) 0.997 0.990 0.996 -0.001 -0.007
(M) (D) (B) (T) 0.993 0.986 0.994 0.001 -0.006

Table D.10: Meter classification on the Ballroom Dataset

Appendix D: Attribute Prediction and Tempo Estimation
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[4] F. Krebs, S. Böck, and G. Widmer, “Rhythmic Pattern Modeling for Beat and Downbeat
Tracking in Musical Audio.” Proc. of the International Society for Music Information
Retrieval Conference, 2013.

[5] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE Trans. on
Audio, Speech and Language Processing, vol. 10, no. 5, pp. 293–302, 2002.

[6] M. Slaney, “Semantic-audio retrieval,” Proc. of the International Conference on Acoustics,
Speech and Signal Processing, 2002.

[7] Y. E. Y. Kim, E. M. E. Schmidt, R. Migneco, B. Morton, P. Richardson, J. Scott, J. A.
Speck, and D. Turnbull, “Music emotion recognition: A state of the art review,” Proc.
ISMIR, no. Proc. of the International Society for Music Information Retrieval Conference,
pp. 255–266, 2010.
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